Patents by Inventor Reed K. Lawrence

Reed K. Lawrence has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8036023
    Abstract: A circuit and method are provided in which a six-transistor (6-T) SRAM memory cell is hardened to single-event upsets by adding isolation-field effect transistors (“iso-fets”) connected between the reference voltage Vdd and the field-effect transistors (“fets”) respectively corresponding to first and second inverters of the memory cell. According to certain embodiments, the control gates of first and second P-iso-fets are respectively tied to the control gates of first and second pull-up P-fets. According to certain embodiments, first and second N-iso-fets are connected between the output nodes of the memory cell and the pull-down N-fets respectively corresponding to the first and second inverters. The control gates of the first and second N-iso-fets are respectively tied to the control gates of the first and second pull-down N-fets. Again according to certain embodiments, one or more of the iso-fets are physically removed from the proximity of other transistors which comprise the memory cell.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: October 11, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Reed K. Lawrence, Nadim F. Haddad
  • Patent number: 8021991
    Abstract: Oxide films are deposited under conditions generating a silicon-rich oxide in which silicon nanoclusters form either during deposition or during subsequent annealing. Such deposition conditions include those producing films with optical indices (n) greater than 1.46. The method of the present invention reduces the TID radiation-induced shifts for the oxides.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: September 20, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Harold L Hughes, Bernard J Mrstik, Reed K Lawrence, Patrick J McMarr
  • Publication number: 20110026315
    Abstract: A circuit and method are provided in which a six-transistor (6-T) SRAM memory cell is hardened to single-event upsets by adding isolation-field effect transistors (“iso-fets”) connected between the reference voltage Vdd and the field-effect transistors (“fets”) respectively corresponding to first and second inverters of the memory cell. According to certain embodiments, the control gates of first and second P-iso-fets are respectively tied to the control gates of first and second pull-up P-fets. According to certain embodiments, first and second N-iso-fets are connected between the output nodes of the memory cell and the pull-down N-fets respectively corresponding to the first and second inverters. The control gates of the first and second N-iso-fets are respectively tied to the control gates of the first and second pull-down N-fets. Again according to certain embodiments, one or more of the iso-fets are physically removed from the proximity of other transistors which comprise the memory cell.
    Type: Application
    Filed: October 7, 2010
    Publication date: February 3, 2011
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Reed K. Lawrence, Nadim F. Haddad
  • Patent number: 7876602
    Abstract: A circuit and method are provided in which a six-transistor (6-T) SRAM memory cell is hardened to single-event upsets by adding isolation-field effect transistors (“iso-fets”) connected between the reference voltage Vdd and the field-effect transistors (“fets”) respectively corresponding to first and second inverters of the memory cell. According to certain embodiments, the control gates of first and second P-iso-fets are respectively tied to the control gates of first and second pull-up P-fets. According to certain embodiments, first and second N-iso-fets are connected between the output nodes of the memory cell and the pull-down N-fets respectively corresponding to the first and second inverters. The control gates of the first and second N-iso-fets are respectively tied to the control gates of the first and second pull-down N-fets. Again according to certain embodiments, one or more of the iso-fets are physically removed from the proximity of other transistors which comprise the memory cell.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: January 25, 2011
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Reed K. Lawrence, Nadim F. Haddad
  • Publication number: 20090034312
    Abstract: A circuit and method are provided in which a six-transistor (6-T) SRAM memory cell is hardened to single-event upsets by adding isolation-field effect transistors (“iso-fets”) connected between the reference voltage Vdd and the field-effect transistors (“fets”) respectively corresponding to first and second inverters of the memory cell. According to certain embodiments, the control gates of first and second P-iso-fets are respectively tied to the control gates of first and second pull-up P-fets. According to certain embodiments, first and second N-iso-fets are connected between the output nodes of the memory cell and the pull-down N-fets respectively corresponding to the first and second inverters. The control gates of the first and second N-iso-fets are respectively tied to the control gates of the first and second pull-down N-fets. Again according to certain embodiments, one or more of the iso-fets are physically removed from the proximity of other transistors which comprise the memory cell.
    Type: Application
    Filed: June 18, 2008
    Publication date: February 5, 2009
    Applicant: BAE SYSTEMS INFORMATION AND ELECTRONIC SYSTEMS INTEGRATION INC.
    Inventors: Reed K. Lawrence, Nadim F. Haddad
  • Patent number: 7112850
    Abstract: This invention concerns a non-volatile memory device with a polarizable layer. The apparatus concerns a substrate, a buried oxide layer within the substrate, and a polarizable layer within the substrate. The polarizable layer is formed in a buried oxide layer of a silicon-on-insulator substrate for the fabrication of non-volatile memory. The process of creating the polarizable layer comprises implanting, through the active silicon layer, Si ions into the buried oxide layer at an ion implantation energy selected so that the implanted ion has its peak concentration between 5–50 nm from the silicon/buried oxide interface. The implantation step can occur while externally heating the silicon-on-insulator substrate at a temperature between 25–300 degrees Celsius. An annealing step may be completed to repair any damage the implantation may have created in the silicon-on-insulator substrate.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: September 26, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Harold L. Hughes, Patrick J. McMarr, Reed K. Lawrence
  • Publication number: 20030153137
    Abstract: This invention concerns a process of forming a polarizable layer in a buried oxide layer of a silicon-on-insulator substrate for the fabrication of non-volatile memory. This process comprises implanting, through the active silicon layer, Si ions into the buried oxide layer at an ion implantation energy selected so that the implanted ion has its peak concentration between 5-50 nm from the silicon/buried oxide interface. The implantation step can occur while externally heating the silicon-on-insulator substrate at a temperature between 25-300 degrees Celsius. After implantation, an annealing step may be completed to repair any damage the implantation may have created in the silicon-on-insulator substrate.
    Type: Application
    Filed: March 5, 2003
    Publication date: August 14, 2003
    Inventors: Harold L. Hughes, Patrick J. McMarr, Reed K. Lawrence
  • Publication number: 20030082887
    Abstract: This invention concerns a process of forming a polarizable layer in a buried oxide layer of a silicon-on-insulator substrate for the fabrication of non-volatile memory. This process comprises implanting, through the active silicon layer, Si ions into the buried oxide layer at an ion implantation energy selected so that the implanted ion has its peak concentration between 5-50 nm from the silicon/buried oxide interface. The implantation step can occur while externally heating the silicon-on-insulator substrate at a temperature between 25-300 degrees Celsius. After implantation, an annealing step may be completed to repair any damage the implantation may have created in the silicon-on-insulator substrate.
    Type: Application
    Filed: November 1, 2001
    Publication date: May 1, 2003
    Inventors: Harold L. Hughes, Patrick J. McMarr, Reed K. Lawrence
  • Patent number: 6551898
    Abstract: This invention concerns a process of forming a polarizable layer in a buried oxide layer of a silicon-on-insulator substrate for the fabrication of non-volatile memory. This process comprises implanting, through the active silicon layer, Si ions into the buried oxide layer at an ion implantation energy selected so that the implanted ion has its peak concentration between 5-50 nm from the silicon/buried oxide interface. The implantation step can occur while externally heating the silicon-on-insulator substrate at a temperature between 25-300 degrees Celsius. After implantation, an annealing step may be completed to repair any damage the implantation may have created in the silicon-on-insulator substrate.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: April 22, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Harold L. Hughes, Patrick J. McMarr, Reed K. Lawrence