Patents by Inventor Reed Kotler
Reed Kotler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11989581Abstract: A method, system, and apparatus are disclosed herein for bridging a deterministic phase of instructions with a non-deterministic phase of instructions when those instructions are executed by a machine learning accelerator while executing a machine learning network. Specifically, data is transferred from off-chip memory to on-chip memory (non-deterministic phase of instructions). The data transfer involves determining whether certain on-chip memory is already storing data that has not been consumed yet (e.g., certain memory locations on-chip may be storing data for future consumption and should not be overwritten). Based on determining that the certain on-chip memory is not storing data that has not been consumed yet, the data may be transferred from the off-chip memory to the on-chip memory and the target memory locations may be marked as storing data that has not been consumed yet. The deterministic phase of instructions may be started subsequently.Type: GrantFiled: April 17, 2020Date of Patent: May 21, 2024Assignee: SiMa Technologies, Inc.Inventors: Nishit Shah, Reed Kotler
-
Patent number: 11886981Abstract: A compiler generates a computer program implementing a machine learning network on a machine learning accelerator (MLA) including interconnected processing elements. The computer program includes data transfer instructions for non-colliding data transfers between the processing elements. To generate the data transfer instructions, the compiler determines non-conflicting data transfer paths for data transfers based on a topology of the interconnections between processing elements, on dependencies of the instructions and on a duration for execution of the instructions. Each data transfer path specifies a routing and a time slot for the data transfer. The compiler generates data transfer instructions that specify routing of the data transfers and generates a static schedule that schedules execution of the data transfer instructions during the time slots for the data transfers.Type: GrantFiled: May 1, 2020Date of Patent: January 30, 2024Assignee: SiMa Technologies, Inc.Inventors: Nishit Shah, Srivathsa Dhruvanarayan, Reed Kotler
-
Patent number: 11803740Abstract: A compiler manages memory usage in the machine learning accelerator by intelligently ordering computations of a machine learning network. The compiler identifies partial networks of the machine learning network representing portions of the machine learning network across multiple layers on which an output or set of outputs are dependent. Because any given output may depend on only a limited subset of intermediate outputs from the prior layers, each partial network may include only a small fraction of the intermediate outputs from each layer. Instead of implementing the MLN by computing one layer at a time, the compiler schedules instructions to sequentially implement partial networks. As each layer of a partial network is completed, the intermediate outputs can be released from memory. The described technique enables intermediate outputs to be directly streamed between processing elements of the machine learning accelerator without requiring large transfers to and from external memory.Type: GrantFiled: February 8, 2023Date of Patent: October 31, 2023Assignee: SiMa Technologies, Inc.Inventors: Reed Kotler, Nishit Shah
-
Publication number: 20230334374Abstract: A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The compiler allocates instructions of the computer program to different groups of processing elements (Tiles) for execution such that different groups of Tiles implement different layers of the machine learning network. The compiler may determine the size of the different groups based on a partial computation metric associated with the computations performed to implement the corresponding layer. Furthermore, the compiler may assign specific Tiles to each group based on a set of predefined layout constraints. The compiler may statically schedule at least a portion of the instructions into one or more deterministic phases for execution by the groups of Tiles.Type: ApplicationFiled: June 26, 2023Publication date: October 19, 2023Inventors: Reed Kotler, Nishit Shah
-
Patent number: 11782757Abstract: A machine learning network is implemented by executing a computer program of instructions on a machine learning accelerator (MLA) comprising a plurality of interconnected storage elements (SEs) and processing elements (PEs). The instructions are partitioned into blocks, which are retrieved from off-chip memory. The block includes a set of deterministic instructions (MLA instructions) to be executed by on-chip storage elements and/or processing elements according to a static schedule from a compiler. The MLA instructions may require data retrieved from off-chip memory by memory access instructions contained in prior blocks. The compiler also schedules the memory access instructions in a manner that avoids contention for access to the off-chip memory. By avoiding contention, the execution time of off-chip memory accesses becomes predictable enough and short enough that the memory access instructions may be scheduled so that they are known to complete before the retrieved data is required.Type: GrantFiled: May 7, 2021Date of Patent: October 10, 2023Assignee: SiMa Technologies, Inc.Inventor: Reed Kotler
-
Patent number: 11734549Abstract: A compiler receives a description of a machine learning network (MLN) and generates a computer program that implements the MLN on a machine learning accelerator (MLA). To implement the MLN, the compiler generates compute instructions that implement computations of the MLN on different processing units (Tiles), and data transfer instructions that transfer data used in the computations. The compiler may statically schedule at least a portion of the instructions for execution by the Tiles according to fixed timing. The compiler may initially implement data transfers between non-adjacent Tiles (or external memories) by implementing a sequence of transfers through one or more intermediate Tiles (or external memories) in accordance with a set of default routing rules that dictates the data path. The computer program may then be simulated to identify routing conflicts. When routing conflicts are detected, the compiler updates the computer program in a manner that avoids the conflicts.Type: GrantFiled: April 21, 2020Date of Patent: August 22, 2023Assignee: SiMa Technologies, Inc.Inventors: Reed Kotler, Nishit Shah
-
Patent number: 11734605Abstract: A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The compiler allocates instructions of the computer program to different groups of processing elements (Tiles) for execution such that different groups of Tiles implement different layers of the machine learning network. The compiler may determine the size of the different groups based on a partial computation metric associated with the computations performed to implement the corresponding layer. Furthermore, the compiler may assign specific Tiles to each group based on a set of predefined layout constraints. The compiler may statically schedule at least a portion of the instructions into one or more deterministic phases for execution by the groups of Tiles.Type: GrantFiled: April 29, 2020Date of Patent: August 22, 2023Assignee: SiMa Technologies, Inc.Inventors: Reed Kotler, Nishit Shah
-
Publication number: 20230186063Abstract: A compiler manages memory usage in the machine learning accelerator by intelligently ordering computations of a machine learning network. The compiler identifies partial networks of the machine learning network representing portions of the machine learning network across multiple layers on which an output or set of outputs are dependent. Because any given output may depend on only a limited subset of intermediate outputs from the prior layers, each partial network may include only a small fraction of the intermediate outputs from each layer. Instead of implementing the MLN by computing one layer at a time, the compiler schedules instructions to sequentially implement partial networks. As each layer of a partial network is completed, the intermediate outputs can be released from memory. The described technique enables intermediate outputs to be directly streamed between processing elements of the machine learning accelerator without requiring large transfers to and from external memory.Type: ApplicationFiled: February 8, 2023Publication date: June 15, 2023Inventors: Reed Kotler, Nishit Shah
-
Patent number: 11586894Abstract: A compiler efficiently manages memory usage in the machine learning accelerator by intelligently ordering computations of a machine learning network. The compiler identifies a set of partial networks of the machine learning network representing portions of the machine learning network across multiple layers on which an output or set of outputs are dependent. Because any given output may depend on only a limited subset of intermediate outputs from the prior layers, each partial network may include only a small fraction of the intermediate outputs from each layer. Instead of implementing the MLN by computing one layer at a time, the compiler schedules instructions to sequentially implement partial networks. As each layer of a partial network is completed, the intermediate outputs can be released from memory. The described technique enables intermediate outputs to be directly streamed between processing elements of the machine learning accelerator without requiring large transfers to and from external memory.Type: GrantFiled: May 4, 2020Date of Patent: February 21, 2023Assignee: SiMa Technologies, Inc.Inventors: Reed Kotler, Nishit Shah
-
Publication number: 20230023303Abstract: A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The computer program includes statically scheduled instructions that are executed by a mesh of processing elements (Tiles). The instructions executed by the Tiles are statically scheduled because the compiler can determine which instructions are executed by which Tiles at what times. For example, for the statically scheduled instructions, there are no conditions, branching or data dependencies that can be resolved only at run-time, and which would affect the timing and order of the execution of the instructions.Type: ApplicationFiled: October 3, 2022Publication date: January 26, 2023Inventors: Nishit Shah, Reed Kotler, Srivathsa Dhruvanarayan, Moenes Zaher Iskarous, Kavitha Prasad, Yogesh Laxmikant Chobe, Sedny S.J Attia, Spenser Don Gilliland, Bradley Taylor
-
Publication number: 20220357984Abstract: A machine learning network is implemented by executing a computer program of instructions on a machine learning accelerator (MLA) comprising a plurality of interconnected storage elements (SEs) and processing elements (PEs). The instructions are partitioned into blocks, which are retrieved from off-chip memory. The block includes a set of deterministic instructions (MLA instructions) to be executed by on-chip storage elements and/or processing elements according to a static schedule from a compiler. The MLA instructions may require data retrieved from off-chip memory by memory access instructions contained in prior blocks. The compiler also schedules the memory access instructions in a manner that avoids contention for access to the off-chip memory. By avoiding contention, the execution time of off-chip memory accesses becomes predictable enough and short enough that the memory access instructions may be scheduled so that they are known to complete before the retrieved data is required.Type: ApplicationFiled: May 7, 2021Publication date: November 10, 2022Inventor: Reed Kotler
-
Patent number: 11403519Abstract: A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The computer program includes statically scheduled instructions that are executed by a mesh of processing elements (Tiles). The instructions executed by the Tiles are statically scheduled because the compiler can determine which instructions are executed by which Tiles at what times. For example, for the statically scheduled instructions, there are no conditions, branching or data dependencies that can be resolved only at run-time, and which would affect the timing and order of the execution of the instructions.Type: GrantFiled: April 6, 2020Date of Patent: August 2, 2022Assignee: SiMa Technologies, Inc.Inventors: Nishit Shah, Reed Kotler, Srivathsa Dhruvanarayan, Moenes Zaher Iskarous, Kavitha Prasad, Yogesh Laxmikant Chobe, Sedny S. J Attia, Spenser Don Gilliland
-
Patent number: 11354570Abstract: A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The computer program includes statically scheduled instructions that are executed by a mesh of processing elements (Tiles). The instructions executed by the Tiles are statically scheduled because the compiler can determine which instructions are executed by which Tiles at what times. For example, for the statically scheduled instructions, there are no conditions, branching or data dependencies that can be resolved only at run-time, and which would affect the timing and order of the execution of the instructions.Type: GrantFiled: April 6, 2020Date of Patent: June 7, 2022Assignee: SiMa Technologies, Inc.Inventors: Nishit Shah, Reed Kotler, Srivathsa Dhruvanarayan, Moenes Zaher Iskarous, Kavitha Prasad, Yogesh Laxmikant Chobe, Sedny S. J Attia, Spenser Don Gilliland
-
Patent number: 11321607Abstract: A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The computer program includes statically scheduled instructions that are executed by a mesh of processing elements (Tiles). The instructions executed by the Tiles are statically scheduled because the compiler can determine which instructions are executed by which Tiles at what times. For example, for the statically scheduled instructions, there are no conditions, branching or data dependencies that can be resolved only at run-time, and which would affect the timing and order of the execution of the instructions.Type: GrantFiled: April 3, 2020Date of Patent: May 3, 2022Assignee: SiMa Technologies, Inc.Inventors: Nishit Shah, Reed Kotler, Srivathsa Dhruvanarayan, Moenes Zaher Iskarous, Kavitha Prasad, Yogesh Laxmikant Chobe, Sedny S. J Attia, Spenser Don Gilliland
-
Publication number: 20210342673Abstract: A compiler generates a computer program implementing a machine learning network on a machine learning accelerator (MLA) including interconnected processing elements. The computer program includes data transfer instructions for non-colliding data transfers between the processing elements. To generate the data transfer instructions, the compiler determines non-conflicting data transfer paths for data transfers based on a topology of the interconnections between processing elements, on dependencies of the instructions and on a duration for execution of the instructions. Each data transfer path specifies a routing and a time slot for the data transfer. The compiler generates data transfer instructions that specify routing of the data transfers and generates a static schedule that schedules execution of the data transfer instructions during the time slots for the data transfers.Type: ApplicationFiled: May 1, 2020Publication date: November 4, 2021Inventors: Nishit Shah, Srivathsa Dhruvanarayan, Reed Kotler
-
Publication number: 20210342675Abstract: A compiler efficiently manages memory usage in the machine learning accelerator by intelligently ordering computations of a machine learning network. The compiler identifies a set of partial networks of the machine learning network representing portions of the machine learning network across multiple layers on which an output or set of outputs are dependent. Because any given output may depend on only a limited subset of intermediate outputs from the prior layers, each partial network may include only a small fraction of the intermediate outputs from each layer. Instead of implementing the MLN by computing one layer at a time, the compiler schedules instructions to sequentially implement partial networks. As each layer of a partial network is completed, the intermediate outputs can be released from memory. The described technique enables intermediate outputs to be directly streamed between processing elements of the machine learning accelerator without requiring large transfers to and from external memory.Type: ApplicationFiled: May 4, 2020Publication date: November 4, 2021Inventors: Reed Kotler, Nishit Shah
-
Publication number: 20210342733Abstract: A compiler receives a description of a machine learning network and generates a computer program that implements the machine learning network. The compiler allocates instructions of the computer program to different groups of processing elements (Tiles) for execution such that different groups of Tiles implement different layers of the machine learning network. The compiler may determine the size of the different groups based on a partial computation metric associated with the computations performed to implement the corresponding layer. Furthermore, the compiler may assign specific Tiles to each group based on a set of predefined layout constraints. The compiler may statically schedule at least a portion of the instructions into one or more deterministic phases for execution by the groups of Tiles.Type: ApplicationFiled: April 29, 2020Publication date: November 4, 2021Inventors: Reed Kotler, Nishit Shah
-
Publication number: 20210326173Abstract: A method, system, and apparatus are disclosed herein for bridging a deterministic phase of instructions with a non-deterministic phase of instructions when those instructions are executed by a machine learning accelerator while executing a machine learning network. Specifically, data is transferred from off-chip memory to on-chip memory (non-deterministic phase of instructions). The data transfer involves determining whether certain on-chip memory is already storing data that has not been consumed yet (e.g., certain memory locations on-chip may be storing data for future consumption and should not be overwritten). Based on determining that the certain on-chip memory is not storing data that has not been consumed yet, the data may be transferred from the off-chip memory to the on-chip memory and the target memory locations may be marked as storing data that has not been consumed yet. The deterministic phase of instructions may be started subsequently.Type: ApplicationFiled: April 17, 2020Publication date: October 21, 2021Inventors: Nishit Shah, Reed Kotler
-
Publication number: 20210326189Abstract: A method, system, and apparatus are disclosed herein for bridging a deterministic phase of instructions with a non-deterministic phase of instructions when those instructions are executed by a machine learning accelerator while executing a machine learning network. In the non-deterministic phase, data and instructions are transferred from off-chip memory to on-chip memory. When the transfer is complete, processing elements are synchronized and, upon synchronization, a deterministic phase of instructions is executed by the processing elements.Type: ApplicationFiled: April 17, 2020Publication date: October 21, 2021Inventors: Nishit Shah, Srivathsa Dhruvanarayan, Reed Kotler
-
Publication number: 20210326681Abstract: A compiler receives a description of a machine learning network (MLN) and generates a computer program that implements the MLN on a machine learning accelerator (MLA). To implement the MLN, the compiler generates compute instructions that implement computations of the MLN on different processing units (Tiles), and data transfer instructions that transfer data used in the computations. The compiler may statically schedule at least a portion of the instructions for execution by the Tiles according to fixed timing. The compiler may initially implement data transfers between non-adjacent Tiles (or external memories) by implementing a sequence of transfers through one or more intermediate Tiles (or external memories) in accordance with a set of default routing rules that dictates the data path. The computer program may then be simulated to identify routing conflicts. When routing conflicts are detected, the compiler updates the computer program in a manner that avoids the conflicts.Type: ApplicationFiled: April 21, 2020Publication date: October 21, 2021Inventors: Reed Kotler, Nishit Shah