Patents by Inventor Reed Roeder Corderman

Reed Roeder Corderman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8622223
    Abstract: A method of making a membrane assembly is provided. The method comprises forming an inorganic membrane layer disposed on a substrate, and forming a plurality of macropores in the substrate at least in part using anodization. Further, a membrane assembly is provided. The membrane assembly comprises a filtering membrane that is coupled to an anodized substrate comprising a plurality of macropores.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: January 7, 2014
    Assignee: General Electric Company
    Inventors: Anping Zhang, Azar Alizadeh, Joleyn Eileen Balch, Rui Chen, Anthony John Murray, Vicki Herzl Watkins, Oliver Charles Boomhower, Reed Roeder Corderman, Peter Paul Gipp
  • Patent number: 8354899
    Abstract: Provided is a device, such as a switch structure, that includes a contact and a conductive element that is configured to be deformable between a first position in which the conductive element is separated from the contact and a second position in which the conductive element contacts the contact. The conductive element can be formed substantially of metallic material configured to inhibit time-dependent deformation. For example, the metallic material may be configured to exhibit a maximum steady-state plastic strain rate of less than 10?12 s?1 when subject to a stress of at least about 25 percent of a yield strength of the metallic material and a temperature less than or equal to about half of a melting temperature of the metallic material. The contact and the conductive element may be part of a microelectromechanical device or a nanoelectromechanical device. Associated methods are also provided.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: January 15, 2013
    Assignee: General Electric Company
    Inventors: Christopher Fred Keimel, Marco Francesco Aimi, Shubhra Bansal, Reed Roeder Corderman, Kuna Venkat Satya Rama Kishore, Eddula Sudhakar Reddy, Atanu Saha, Kanakasabapathi Subramanian, Parag Thakre, Alex David Corwin
  • Patent number: 8054148
    Abstract: A device for controlling the flow of electric current is provided. The device comprises a first conductor as thin film form; a second conductor switchably coupled to the first conductor to alternate between an electrically connected state with the first conductor and an electrically disconnected state with the first conductor. At least one conductor further comprises an electrical contact, the electrical contact comprising a solid matrix comprising a plurality of pores; and a filler material disposed within at least a portion of the plurality of pores. The filler material has a melting point of less than about 575 K. A method to make an electrical contact is provided. The method includes the steps of: providing a substrate; providing a plurality of pores on the substrate; and disposing a filler material within at least a portion of the plurality of pores. The filler material has a melting point of less than about 575 K.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: November 8, 2011
    Assignee: General Electric Company
    Inventors: Duraiswamy Srinivasan, Reed Roeder Corderman, Christopher Fred Keimel, Somasundaram Gunasekaran, Sudhakar Eddula Reddy, Arun Virupaksha Gowda, Kanakasabapathi Subramanian, Om Prakash
  • Patent number: 8039726
    Abstract: A device includes a first thermally conductive substrate having a first patterned electrode disposed thereon and a second thermally conductive substrate having a second patterned electrode disposed thereon, wherein the first and second thermally conductive substrates are arranged such that the first and second patterned electrodes are adjacent to one another. The device includes a plurality of nanowires disposed between the first and second patterned electrodes, wherein the plurality of nanowires is formed of a thermoelectric material. The device also includes a joining material disposed between the plurality of nanowires and at least one of the first and second patterned electrodes.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: October 18, 2011
    Assignee: General Electric Company
    Inventors: An-Ping Zhang, Fazila Seker, Reed Roeder Corderman, Shixue Wen, Fred Sharifi, Melissa Suzanne Sander, Craig Douglas Young
  • Publication number: 20110185728
    Abstract: In accordance with the present disclosure, a receiver panel is provided that includes multiple thermally conductive nanostructures. The thermally conductive nanostructures may be provided on a substrate that supports the multiple thermally conductive nanostructures. In one embodiment, the thermally conductive nanostructures may be substantially orthogonal with respect to the surface of the substrate.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 4, 2011
    Applicant: General Electric Company
    Inventors: Mark Marshall Meyers, Reed Roeder Corderman, Mohamed Sakami, Loucas Tsakalakos, Kevin Richard Lang
  • Publication number: 20110067983
    Abstract: Provided is a device, such as a switch structure, that includes a contact and a conductive element that is configured to be deformable between a first position in which the conductive element is separated from the contact and a second position in which the conductive element contacts the contact. The conductive element can be formed substantially of metallic material configured to inhibit time-dependent deformation. For example, the metallic material may be configured to exhibit a maximum steady-state plastic strain rate of less than 10?12 s?1 when subject to a stress of at least about 25 percent of a yield strength of the metallic material and a temperature less than or equal to about half of a melting temperature of the metallic material. The contact and the conductive element may be part of a microelectromechanical device or a nanoelectromechanical device. Associated methods are also provided.
    Type: Application
    Filed: September 23, 2009
    Publication date: March 24, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Christopher Fred Keimel, Marco Francesco Aimi, Shubhra Bansal, Reed Roeder Corderman, Kuna Venkat Satya Rama Kishore, Eddula Sudhakar Reddy, Atanu Saha, Kanakasabapathi Subramanian, Parag Thakre, Alex David Corwin
  • Publication number: 20110062003
    Abstract: A device for controlling the flow of electric current is provided. The device comprises a first conductor as thin film form; a second conductor switchably coupled to the first conductor to alternate between an electrically connected state with the first conductor and an electrically disconnected state with the first conductor. At least one conductor further comprises an electrical contact, the electrical contact comprising a solid matrix comprising a plurality of pores; and a filler material disposed within at least a portion of the plurality of pores. The filler material has a melting point of less than about 575 K. A method to make an electrical contact is provided. The method includes the steps of: providing a substrate; providing a plurality of pores on the substrate; and disposing a filler material within at least a portion of the plurality of pores. The filler material has a melting point of less than about 575 K.
    Type: Application
    Filed: September 29, 2010
    Publication date: March 17, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Duraiswamy Srinivasan, Reed Roeder Corderman, Christopher Fred Keimel, Somasundaram Gunasekaran, Sudhakar Eddula Reddy, Arun Virupaksha Gowda, Kanakasabapathi Subramanian, Om Prakash
  • Patent number: 7902736
    Abstract: The present invention relates to gated nanorod field emission devices, wherein such devices have relatively small emitter tip-to-gate distances, thereby providing a relatively high emitter tip density and low turn on voltage. Such methods employ a combination of traditional device processing techniques (lithography, etching, etc.) with electrochemical deposition of nanorods. These methods are relatively simple, cost-effective, and efficient; and they provide field emission devices that are suitable for use in x-ray imaging applications, lighting applications, flat panel field emission display (FED) applications, etc.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: March 8, 2011
    Assignee: General Electric Company
    Inventors: Heather Diane Hudspeth, Ji Ung Lee, Reed Roeder Corderman, Anping Zhang, Renee Bushey Rohling, Lauraine Denault, Joleyn Eileen Balch
  • Publication number: 20100147762
    Abstract: A method of making a membrane assembly is provided. The method comprises forming an inorganic membrane layer disposed on a substrate, and forming a plurality of macropores in the substrate at least in part using anodization. Further, a membrane assembly is provided. The membrane assembly comprises a filtering membrane that is coupled to an anodized substrate comprising a plurality of macropores.
    Type: Application
    Filed: December 17, 2008
    Publication date: June 17, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Anping Zhang, Azar Alizadeh, Joleyn Eileen Balch, Rui Chen, Anthony John Murray, Vicki Herzl Watkins, Oliver Charles Boomhower, Reed Roeder Corderman, Peter Paul Gipp
  • Patent number: 7686885
    Abstract: In some embodiments, the present invention addresses the challenges of fabricating nanorod arrays comprising a heterogeneous composition and/or arrangement of the nanorods. In some embodiments, the present invention is directed to multicomponent nanorod arrays comprising nanorods of at least two different chemical compositions, and to methods of making same. In some or other embodiments, the nanorods are spatially positioned within the array in a pre-defined manner.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: March 30, 2010
    Assignee: General Electric Company
    Inventors: Anthony Yu-Chung Ku, Reed Roeder Corderman, Krzysztof Slowinski
  • Publication number: 20090214851
    Abstract: A nanostructure array including a nanoporous template and a masking material disposed on the nanoporous template such that a first number of the plurality of nanopores are fully coated while a second number of the plurality of nanopores are not-fully coated by the masking material is provided. The array includes forming nanostructures within the plurality of nanopores that are not-fully coated by the masking material.
    Type: Application
    Filed: January 12, 2009
    Publication date: August 27, 2009
    Applicant: General Electric Company
    Inventors: Reed Roeder Corderman, Anthony Yu-Chung Ku
  • Patent number: 7488671
    Abstract: A method of making a nanostructure array including disposing a masking material on a nanoporous template such that a first number of the plurality of nanopores are fully coated while a second number of the plurality of nanopores are not-fully coated by the masking material is provided. The method includes forming the nanostructures within the plurality of nanopores that are not-fully coated by the masking material. A nanostructure array fabricated in accordance to above said method and devices based on the nanostructure array is also provided.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: February 10, 2009
    Assignee: General Electric Company
    Inventors: Reed Roeder Corderman, Anthony Yu-Chung Ku
  • Patent number: 7411341
    Abstract: The present invention relates to gated nanorod field emission devices, wherein such devices have relatively small emitter tip-to-gate distances, thereby providing a relatively high emitter tip density and low turn on voltage. Such methods employ a combination of traditional device processing techniques (lithography, etching, etc.) with electrochemical deposition of nanorods. These methods are relatively simple, cost-effective, and efficient; and they provide field emission devices that are suitable for use in x-ray imaging applications, lighting applications, flat panel field emission display (FED) applications, etc.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: August 12, 2008
    Assignee: General Electric Company
    Inventors: Heather Diane Hudspeth, Reed Roeder Corderman, Renee Bushey Rohling, Lauraine Denault
  • Publication number: 20080129178
    Abstract: The present invention relates to gated nanorod field emission devices, wherein such devices have relatively small emitter tip-to-gate distances, thereby providing a relatively high emitter tip density and low turn on voltage. Such methods employ a combination of traditional device processing techniques (lithography, etching, etc.) with electrochemical deposition of nanorods. These methods are relatively simple, cost-effective, and efficient; and they provide field emission devices that are suitable for use in x-ray imaging applications, lighting applications, flat panel field emission display (FED) applications, etc.
    Type: Application
    Filed: January 9, 2008
    Publication date: June 5, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Heather Diane Hudspeth, Ji Ung Lee, Reed Roeder Corderman, Anping Zhang, Renee Bushey Rohling, Lauraine Denault, Joleyn Eileen Balch
  • Publication number: 20080102296
    Abstract: A coated turbine engine component includes a turbine engine component and an erosion resistant coating disposed on at least a portion of a surface of the turbine engine component using electron beam physical vapor deposition or ion plasma cathodic arc deposition.
    Type: Application
    Filed: October 26, 2006
    Publication date: May 1, 2008
    Inventors: Farshad Ghasripoor, Norman Arnold Turnquist, Kripa Kiran Varanasi, Reed Roeder Corderman, Sean Douglas Feeny
  • Patent number: 7326328
    Abstract: The present invention relates to gated nanorod field emission devices, wherein such devices have relatively small emitter tip-to-gate distances, thereby providing a relatively high emitter tip density and low turn on voltage. Such methods employ a combination of traditional device processing techniques (lithography, etching, etc.) with electrochemical deposition of nanorods. These methods are relatively simple, cost-effective, and efficient; and they provide field emission devices that are suitable for use in x-ray imaging applications, lighting applications, flat panel field emission display (FED) applications, etc.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: February 5, 2008
    Assignee: General Electric Company
    Inventors: Heather Diane Hudspeth, Ji Ung Lee, Reed Roeder Corderman, Anping Zhang, Renee Bushey Rohling, Lauraine Denault, Joleyn Eileen Balch
  • Publication number: 20070275499
    Abstract: A method of making a nanostructure array including disposing a masking material on a nanoporous template such that a first number of the plurality of nanopores are fully coated while a second number of the plurality of nanopores are not-fully coated by the masking material is provided. The method includes forming the nanostructures within the plurality of nanopores that are not-fully coated by the masking material. A nanostructure array fabricated in accordance to above said method and devices based on the nanostructure array is also provided.
    Type: Application
    Filed: May 26, 2006
    Publication date: November 29, 2007
    Inventors: Reed Roeder Corderman, Anthony Yu-Chung Ku
  • Patent number: 7279085
    Abstract: The present invention relates to gated nanorod field emission devices, wherein such devices have relatively small emitter tip-to-gate distances, thereby providing a relatively high emitter tip density and low turn on voltage. Such methods employ a combination of traditional device processing techniques (lithography, etching, etc.) with electrochemical deposition of nanorods. These methods are relatively simple, cost-effective, and efficient; and they provide field emission devices that are suitable for use in x-ray imaging applications, lighting applications, flat panel field emission display (FED) applications, etc.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: October 9, 2007
    Assignee: General Electric Company
    Inventors: Heather Diane Hudspeth, Reed Roeder Corderman, Renee Bushey Rohling, Lauraine Denault
  • Patent number: 7239076
    Abstract: A self-aligned gated field emission device and an associated method of fabrication are described. The device includes a substrate and a porous layer disposed adjacent to the surface of the substrate, wherein the porous layer defines a plurality of substantially cylindrical channels, each of the plurality of substantially cylindrical channels aligned substantially parallel to one another and substantially perpendicular to the surface of the substrate. The device also includes a plurality of substantially rod-shaped structures disposed within at least a portion of the plurality of substantially cylindrical channels defined by the porous layer and adjacent to the surface of the substrate, wherein a portion of each of the plurality of substantially rod-shaped structures protrudes above the surface of the porous layer.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: July 3, 2007
    Assignee: General Electric Company
    Inventors: Ji Ung Lee, Reed Roeder Corderman, William Hullinger Huber
  • Patent number: 7202579
    Abstract: A water-cooled stator bar clip for electrical generators and a method for applying a corrosion-resistant protective coating, preferably Sc, Ti, Cr, Zr, Nb, Mo, Hf, Ta, W, Ni, and Al, and their alloys or oxides to existing stator bar end fittings in order to significantly reduce the possibility of leaks through the brazed connections of the copper stator bar end connections. The coatings can be applied locally using various known physical vapor deposition (“PVD”), chemical vapor deposition (“CVD”) or other direct coating techniques known in the art. For example, the coatings can be applied using ion plasma deposition, sputtering or wire arc techniques (all PVD processes) or by using electroplating, high velocity oxygen free (“HVOF”) deposition, DC arc or electroless plating. Preferably, the coatings are applied either to new stator bar clips or to existing clips in the field.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: April 10, 2007
    Assignee: General Electric Company
    Inventors: Young Jin Kim, Paul Joseph Martiniano, Reed Roeder Corderman, Scott Andrew Weaver, Alan Michael Iversen, James Rollins Maughan