Patents by Inventor Refael Whyte

Refael Whyte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9778363
    Abstract: In illustrative implementations, a time-of-flight camera robustly measures scene depths, despite multipath interference. The camera emits amplitude modulated light. An FPGA sends at least two electrical signals, the first being to control modulation of radiant power of a light source and the second being a reference signal to control modulation of pixel gain in a light sensor. These signals are identical, except for time delays. These signals comprise binary codes that are m-sequences or other broadband codes. The correlation waveform is not sinusoidal. During measurements, only one fundamental modulation frequency is used. One or more computer processors solve a linear system by deconvolution, in order to recover an environmental function. Sparse deconvolution is used if the scene has only a few objects at a finite depth. Another algorithm, such as Wiener deconvolution, is used is the scene has global illumination or a scattering media.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: October 3, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Achuta Kadambi, Refael Whyte, Ayush Bhandari, Lee Streeter, Christopher Barsi, Adrian Dorrington, Ramesh Raskar
  • Publication number: 20150120241
    Abstract: In illustrative implementations, a time-of-flight camera robustly measures scene depths, despite multipath interference. The camera emits amplitude modulated light. An FPGA sends at least two electrical signals, the first being to control modulation of radiant power of a light source and the second being a reference signal to control modulation of pixel gain in a light sensor. These signals are identical, except for time delays. These signals comprise binary codes that are m-sequences or other broadband codes. The correlation waveform is not sinusoidal. During measurements, only one fundamental modulation frequency is used. One or more computer processors solve a linear system by deconvolution, in order to recover an environmental function. Sparse deconvolution is used if the scene has only a few objects at a finite depth. Another algorithm, such as Wiener deconvolution, is used is the scene has global illumination or a scattering media.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 30, 2015
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Achuta Kadambi, Refael Whyte, Ayush Bhandari, Lee Streeter, Christopher Barsi, Adrian Dorrington, Ramesh Raskar