Patents by Inventor Regina Soufli

Regina Soufli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210373212
    Abstract: A multilayer film structure, and method of making such a multilayer film structure, which includes a first layer consisting essentially of a first material and a second layer consisting essentially of a second material. In embodiments, the multilayer film structure includes a plurality of first layers alternating with a plurality of second layers. The layers are constructed by applying a N2-based reactive sputtering methodology so that the layers maintain a largely amorphous microstructure and a stable and high reflectivity upon annealing at temperatures up to 800° C. for 1 hour.
    Type: Application
    Filed: May 26, 2020
    Publication date: December 2, 2021
    Inventors: Catherine Burcklen, Tommaso Pardini, Regina Soufli
  • Patent number: 10901121
    Abstract: A method of making a laser mirror in which a mirror substrate has at least a one micron size nodular defect includes depositing a planarization layer over the mirror substrate and the nodular defect, depositing a layer of silicon dioxide over the planarization layer, and etching away a portion of the layer of silicon dioxide. The method also includes thereafter, depositing a layer of hafnium dioxide over the layer of silicon dioxide and repeating the steps of depositing a layer of silicon dioxide, etching away a portion of the layer of silicon dioxide, and depositing a layer of hafnium dioxide until the nodular defect is reduced in size a predetermined amount.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: January 26, 2021
    Assignees: Lawrence Livermore National Security, LLC, Colorado State University Research Foundation
    Inventors: Christopher J. Stolz, James A. Folta, Paul B. Mirkarimi, Regina Soufli, Christopher Charles Walton, Justin Wolfe, Carmen Menoni, Dinesh Patel
  • Publication number: 20190162879
    Abstract: A method of making a laser mirror in which a mirror substrate has at least a one micron size nodular defect includes depositing a planarization layer over the mirror substrate and the nodular defect, depositing a layer of silicon dioxide over the planarization layer, and etching away a portion of the layer of silicon dioxide. The method also includes thereafter, depositing a layer of hafnium dioxide over the layer of silicon dioxide and repeating the steps of depositing a layer of silicon dioxide, etching away a portion of the layer of silicon dioxide, and depositing a layer of hafnium dioxide until the nodular defect is reduced in size a predetermined amount.
    Type: Application
    Filed: November 7, 2018
    Publication date: May 30, 2019
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Christopher J. Stolz, James A. Folta, Paul B. Mirkarimi, Regina Soufli, Christopher Charles Walton, Justin Wolfe, Carmen Menoni, Dinesh Patel
  • Patent number: 10175391
    Abstract: Planarization of defects in laser mirror and other optical component manufacture is disclosed. The planarization is performed by first depositing a relatively thick planarization layer, then carrying out a sequential deposition and etch process. The technique takes advantage of the non-uniform material removal rate as a function of etchant incident angle, and effectively buries the inclusion in a thick film with a near planar top surface. The process enables faster, more reliable manufacture of a non-defective high fluence multilayer mirror particularly suitable for high energy laser applications.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: January 8, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Christopher Stolz, Jim Folta, Paul B. Mirkarimi, Regina Soufli, Christopher C. Walton, Justin Wolfe, Carmen Menoni, Dinesh Patel
  • Publication number: 20150276993
    Abstract: Planarization of defects in laser mirror and other optical component manufacture is disclosed. The planarization is performed by first depositing a relatively thick planarization layer, then carrying out a sequential deposition and etch process. The technique takes advantage of the non-uniform material removal rate as a function of etchant incident angle, and effectively buries the inclusion in a thick film with a near planar top surface. The process enables faster, more reliable manufacture of a non-defective high fluence multilayer mirror particularly suitable for high energy laser applications.
    Type: Application
    Filed: January 25, 2013
    Publication date: October 1, 2015
    Inventors: Christopher J. Stolz, Jim Folta, Paul B. Mirkarimi, Regina Soufli, Christopher C. Walton, Justin Wolfe, Carmen Menoni, Dinesh Patel
  • Publication number: 20130100976
    Abstract: In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.
    Type: Application
    Filed: October 24, 2011
    Publication date: April 25, 2013
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Regina Soufli, Monica Fernandez-Perea, Jeff C. Robinson
  • Patent number: 8416829
    Abstract: In one general embodiment, a thin film structure includes a substrate; a first corrosion barrier layer above the substrate; a reflective layer above the first corrosion barrier layer, wherein the reflective layer comprises at least one repeating set of sub-layers, wherein one of the sub-layers of each set of sub-layers being of a corrodible material; and a second corrosion barrier layer above the reflective layer. In another general embodiment, a system includes an optical element having a thin film structure as recited above; and an image capture or spectrometer device. In a further general embodiment, a laser according to one embodiment includes a light source and the thin film structure as recited above.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: April 9, 2013
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Regina Soufli, Monica Fernandez-Perea, Jeff C. Robinson