Patents by Inventor Reinhard Becker

Reinhard Becker has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9759583
    Abstract: A method for finding a reference correction value of an angular encoder index mark is given. The angular encoder has a first read head, a second read head, and a patterned element that includes incremental marks and an index mark. In a first instance, the first read head detects the presence of the index mark and, in response, the second read head generates a first analog signal. In a second instance, the first read head detects the presence of the index mark and, in response, the second read head generates a second analog signal. A processor determines the reference correction value based at least in part on the first analog signal and the second analog signal.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: September 12, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Alexander Kramer, Martin Ossig, Reinhard Becker
  • Publication number: 20170254884
    Abstract: A laser scanner collects gray-scale values and associated 3D coordinates of a scanned object in a spherical coordinate system, and displays reformatted gray-scale values that are reformatted from the spherical coordinate system into a planar view rectangular region. The reformatted gray-scale values have at least one straight line of the object appearing as a curved line on a display.
    Type: Application
    Filed: May 16, 2017
    Publication date: September 7, 2017
    Inventors: Reinhard Becker, Bernd-Dietmar Becker, Martin Ossig
  • Patent number: 9747662
    Abstract: A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates of the scene with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A trajectory display mode sequentially displays a collection of 2D images at the trajectory points. A rotational display mode allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: August 29, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Reinhard Becker, Martin Ossig
  • Patent number: 9746559
    Abstract: A method for measuring and registering 3D coordinates has a 3D scanner measure a first collection of 3D coordinates of points from a first registration position and a second collection of 3D coordinates of points from a second registration position. In between these positions, the 3D scanner collects 2D camera images. A processor determines first and second translation values and a first rotation value based on the 2D camera images. The processor adjusts the second collection of points relative to the first collection of points based at least in part on the first and second translation values and the first rotation value. The processor identifies a correspondence among registration targets in the first and second collection of 3D coordinates, and uses this correspondence to further adjust the relative position and orientation of the first and second collection of 3D coordinates.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: August 29, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Oliver Zweigle, Bernd-Dietmar Becker, Reinhard Becker
  • Publication number: 20170243368
    Abstract: A method for automatically generating a three-dimensional (3D) video of a scene by measuring and registering 3D coordinates at a first position and a second position of a 3D measuring device, the 3D video generated by combining two-dimensional images extracted at trajectory points along a trajectory path.
    Type: Application
    Filed: May 11, 2017
    Publication date: August 24, 2017
    Inventors: Reinhard Becker, Martin Ossig, Daniel Flohr, Daniel Pompe
  • Patent number: 9741093
    Abstract: A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates of the scene with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A user interface provides a trajectory display mode that sequentially displays a collection of 2D images at the trajectory points. The user interface also provides a rotational display mode that allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: August 22, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Reinhard Becker, Martin Ossig
  • Patent number: 9739886
    Abstract: A method for measuring and registering 3D coordinates has a 3D scanner measure a first collection of 3D coordinates of points from a first registration position. A 2D scanner collects horizontal 2D scan sets as 3D measuring device moves from first to second registration positions. A processor determines first and second translation values and a first rotation value based on collected 2D scan sets. 3D scanner measures a second collection of 3D coordinates of points from second registration position. Processor adjusts second collection of points relative to first collection of points based at least in part on first and second translation values and first rotation value. Processor identifies a correspondence among registration targets in first and second collection of 3D coordinates, and uses this correspondence to further adjust the relative position and orientation of first and second collection of 3D coordinates.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: August 22, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Oliver Zweigle, Bernd-Dietmar Becker, Reinhard Becker
  • Publication number: 20170193673
    Abstract: A device for optically scanning and measuring an environment is provided. The device includes at least one projector for producing at least one uncoded pattern on an object in the environment. A first camera is provided for recording at least one first image of the object provided with the pattern, the first camera having a first image plane. A second camera is provided for recording at least one second image of the object provided with the uncoded pattern, the second camera being spaced apart from the first camera in order to acquire the uncoded pattern on a second image plane. A controller is provided having a processor configured to determine the three-dimensional coordinates of points on the surface of the object based at least in part on the uncoded pattern, the at least one first image and the at least one second image.
    Type: Application
    Filed: March 20, 2017
    Publication date: July 6, 2017
    Inventors: Rolf Heidemann, Martin Ossig, Reinhard Becker
  • Publication number: 20170184711
    Abstract: A method for optically scanning and measuring an environment using a 3D measurement device is provided. The method includes steps that are performed prior to operation. These steps include positioning a near-field communication (NFC) device adjacent the 3D measurement device. An NFC link is established between the NFC device and the 3D measurement device. An identifier is transmitted from the NFC device to the 3D measurement device. It is determined that the NFC device is authorized to communicate with the 3D measurement device based at least in part on the identifier. Commands are transferred to the 3D measurement device from the NFC device based at least in part on determining the first NFC device is authorized. At least one communication path is activated. The 3D measurement device is connected to a network of computers and measurement data is transmitted from the 3D measurement device to the network of computers.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 29, 2017
    Inventors: Reinhard Becker, Martin Ossig, Andreas Ditte
  • Publication number: 20170184710
    Abstract: A method for scanning and measuring using a 3D measurement device is provided. The method includes providing the 3D measurement device having a light emitter, a light receiver and a command and evaluation device. The 3D measurement device is further includes a first near-field communication (NFC) device having a first antenna. A second NFC device having a second antenna is positioned adjacent the 3D measurement device. An NFC link is established between the first NFC device and the 3D measurement device. An identifier is transmitted from the second NFC device to the 3D measurement device. It is determined that the second NFC device is authorized to communicate with the 3D measurement device. Commands are transferred to the 3D measurement device from the second NFC device based at least in part on the determination that the second NFC device is authorized to communicate with the 3D measurement device.
    Type: Application
    Filed: December 21, 2016
    Publication date: June 29, 2017
    Inventors: Reinhard Becker, Martin Ossig, Andreas Ditte
  • Publication number: 20170184703
    Abstract: A 3D measuring device is provided. The device includes a measuring head with a light transmitter and a light receiver. A control and evaluation device is coupled to the light transmitter and light receiver and determines the distance to the object. An accessory interface allows an accessory device to be mechanically connected to the measuring head and can be electrically connected to the control and evaluation device. The accessory interface includes a receiving section and a contact section. The receiving and contact sections are arranged such that the accessory device can be inserted into the accessory interface in an insertion direction in order to electrically and mechanically couple the accessory device to the accessory interface. A support structure having an integral slot is coupled to the measuring head. The slot has the receiving section for the mechanical connection and the at least one contact section.
    Type: Application
    Filed: December 22, 2016
    Publication date: June 29, 2017
    Inventors: Reinhard Becker, Andreas Ditte, Matthias Gramenz, Andreas Woloschyn, Selim Hauschild
  • Patent number: 9689986
    Abstract: A method is given for finding a reference correction value of an index mark of an angular encoder. The angular encoder includes a first read head, a second read head, and a patterned element having incremental marks and an index mark. In a first instance and in a second instance, the patterned element is rotated relative to the read heads to obtain incremental readings from the first read head and the second read head and an index mark from the first read head. Based on these readings, a processor determines, in the first instance, a first reference position and, in the second instance, a second reference position. The processor determines the reference correction value based at least in part on the first reference position and the second reference position.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: June 27, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Alexander Kramer, Martin Ossig, Reinhard Becker
  • Patent number: 9689972
    Abstract: A laser scanner collects gray-scale values and associated 3D coordinates of a scanned object in a spherical coordinate system, and displays reformatted gray-scale values that are reformatted from the spherical coordinate system into a planar view rectangular region. The reformatted gray-scale values have at least one straight line of the object appearing as a curved line on a display.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: June 27, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Reinhard Becker, Bernd-Dietmar Becker, Martin Ossig
  • Publication number: 20170161867
    Abstract: A method interactively displays panoramic images of a scene. The method includes measuring 3D coordinates of the scene with a 3D measuring instrument at a first position and a second position. The 3D coordinates are registering into a common frame of reference. Within the scene, a trajectory includes a plurality of trajectory points. Along the trajectory, 2D images are generated from the commonly registered 3D coordinates. A trajectory display mode sequentially displays a collection of 2D images at the trajectory points. A rotational display mode allows a user to select a desired view direction at a given trajectory point. The user selects the trajectory display mode or the rotational display mode and sees the result shown on the display device.
    Type: Application
    Filed: February 16, 2017
    Publication date: June 8, 2017
    Inventors: Reinhard Becker, Martin Ossig
  • Patent number: 9671221
    Abstract: A device for scanning and obtaining three-dimensional coordinates is provided. The device may be a hand-held scanner that includes a carrying structure having a front and reverse side, the carrying structure having a first arm, a second arm and a third arm arranged in a T-shape or a Y-shape. A housing is coupled to the reverse side, a handle is positioned opposite the carrying structure, the housing and carrying structure defining an interior space. At least one projector is configured to project at least one pattern on an object, the projector being positioned within the interior space and oriented to project the at least one pattern from the front side. At least two cameras are provided spaced apart from each other, the cameras being configured to record images of the object. The cameras and projector are spaced apart from each other by a pre-determined distance.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: June 6, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Axel Ruhland, Rolf Heidemann, Reinhard Becker, Martin Ossig
  • Patent number: 9652852
    Abstract: A method for automatically generating a three-dimensional (3D) video of a scene by measuring and registering 3D coordinates at a first position and a second position of a 3D measuring device, the 3D video generated by combining two-dimensional images extracted at trajectory points along a trajectory path.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: May 16, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Reinhard Becker, Martin Ossig, Daniel Flohr, Daniel Pompe
  • Publication number: 20170123054
    Abstract: A laser scanner collects gray-scale values and associated 3D coordinates of a scanned object in a spherical coordinate system, and displays reformatted gray-scale values that are reformatted from the spherical coordinate system into a planar view rectangular region. The reformatted gray-scale values have at least one straight line of the object appearing as a curved line on a display.
    Type: Application
    Filed: January 12, 2017
    Publication date: May 4, 2017
    Inventors: Reinhard Becker, Bernd-Dietmar Becker, Martin Ossig
  • Patent number: 9618620
    Abstract: A method for measuring and registering 3D coordinates has a 3D scanner measure a first collection of 3D coordinates of points from a first registration position and a second collection of 3D coordinates of points from a second registration position. In between these positions, the 3D measuring device collects depth-camera images. A processor determines first and second translation values and a first rotation value based on the depth-camera images. The processor identifies a correspondence among registration targets in the first and second collection of 3D coordinates based at least in part on the first and second translation values and the first rotation value. The processor uses this correspondence and the first and second collection of 3D coordinates to determine 3D coordinates of a registered 3D collection of points.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: April 11, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Oliver Zweigle, Bernd-Dietmar Becker, Reinhard Becker
  • Patent number: 9599455
    Abstract: A device for optically scanning and measuring an environment is provided. The device includes at least one projector for producing at least one uncoded pattern on an object in the environment. A first camera is provided for recording at least one first image of the object provided with the pattern, the first camera having a first image plane. A second camera is provided for recording at least one second image of the object provided with the uncoded pattern, the second camera being spaced apart from the first camera in order to acquire the uncoded pattern on a second image plane. A controller is provided having a processor configured to determine the three-dimensional coordinates of points on the surface of the object based at least in part on the uncoded pattern, the at least one first image and the at least one second image.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: March 21, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Rolf Heidemann, Martin Ossig, Reinhard Becker
  • Patent number: 9599715
    Abstract: Measuring a volume of space including providing a laser scanner having a transmitter, a receiver, a beam steering mechanism, and a display unit integral to the laser scanner. A plurality of distances to measuring points are determined based at least in part on propagation times of measuring beams sent from the beam steering mechanism and reflected beams. Gray-scale values representative of the measuring points are determined and assigned to elements of a measuring point array, and the measuring point array is transformed into a display point array that corresponds to a first number of display points. The measuring point array corresponds to a second number of measuring points greater than the first number. The transforming includes assigning display gray-scale values to elements of the display point array. For each display point, a pixel of the display unit is illuminated, with the level of illumination depending on the display gray-scale value.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: March 21, 2017
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Reinhard Becker, Bernd-Dietmar Becker, Martin Ossig