Patents by Inventor Remi Samuel AUDFRAY

Remi Samuel AUDFRAY has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11570570
    Abstract: Systems and methods of presenting an output audio signal to a listener located at a first location in a virtual environment are disclosed. According to embodiments of a method, an input audio signal is received. For each sound source of a plurality of sound sources in the virtual environment, a respective first intermediate audio signal corresponding to the input audio signal is determined, based on a location of the respective sound source in the virtual environment, and the respective first intermediate audio signal is associated with a first bus. For each of the sound sources of the plurality of sound sources in the virtual environment, a respective second intermediate audio signal is determined. The respective second intermediate audio signal corresponds to a reverberation of the input audio signal in the virtual environment.
    Type: Grant
    Filed: February 12, 2021
    Date of Patent: January 31, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Patent number: 11546716
    Abstract: Examples of the disclosure describe systems and methods for presenting an audio signal to a user of a wearable head device. According to an example method, a source location corresponding to the audio signal is identified. An acoustic axis corresponding to the audio signal is determined. For each of a respective left and right ear of the user, an angle between the acoustic axis and the respective ear is determined. For each of the respective left and right ear of the user, a virtual speaker position, of a virtual speaker array, is determined, the virtual speaker position collinear with the source location and with a position of the respective ear. The virtual speaker array includes a plurality of virtual speaker positions, each virtual speaker position of the plurality located on the surface of a sphere concentric with the user's head, the sphere having a first radius.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: January 3, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker, Mark Brandon Hertensteiner, Justin Dan Mathew, Anastasia Andreyevna Tajik, Nicholas John LaMartina
  • Publication number: 20220417686
    Abstract: Systems and methods for rendering audio signals are disclosed. In some embodiments, a method may receive an input signal including a first portion and the second portion. A first processing stage comprising a first filter is applied to the first portion to generate a first filtered signal. A second processing stage comprising a second filter is applied to the first portion to generate a second filtered signal. A third processing stage comprising a third filter is applied to the second portion to generate a third filtered signal. A fourth processing stage comprising a fourth filter is applied to the second portion to generate a fourth filtered signal. A first output signal is determined based on a sum of the first filtered signal and the third filtered signal. A second output signal is determined based on a sum of the second filtered signal and the fourth filtered signal.
    Type: Application
    Filed: August 26, 2022
    Publication date: December 29, 2022
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Patent number: 11477592
    Abstract: Systems and methods for rendering audio signals are disclosed. In some embodiments, a method may receive an input signal including a first portion and the second portion. A first processing stage comprising a first filter is applied to the first portion to generate a first filtered signal. A second processing stage comprising a second filter is applied to the first portion to generate a second filtered signal. A third processing stage comprising a third filter is applied to the second portion to generate a third filtered signal. A fourth processing stage comprising a fourth filter is applied to the second portion to generate a fourth filtered signal. A first output signal is determined based on a sum of the first filtered signal and the third filtered signal. A second output signal is determined based on a sum of the second filtered signal and the fourth filtered signal.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: October 18, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Publication number: 20220130370
    Abstract: Systems and methods for providing accurate and independent control of reverberation properties are disclosed. In some embodiments, a system may include a reverberation processing system, a direct processing system, and a combiner. The reverberation processing system can include a reverb initial power (RIP) control system and a reverberator. The RIP control system can include a reverb initial gain (RIG) and a RIP corrector. The RIG can be configured to apply a RIG value to the input signal, and the RIP corrector can be configured to apply a RIP correction factor to the signal from the RIG. The reverberator can be configured to apply reverberation effects to the signal from the RIP control system. In some embodiments, one or more values and/or correction factors can be calculated and applied such that the signal output from a component in the reverberation processing system is normalized to a predetermined value (e.g., unity (1.0)).
    Type: Application
    Filed: January 4, 2022
    Publication date: April 28, 2022
    Inventors: Remi Samuel AUDFRAY, Jean-Marc JOT, Samuel Charles DICKER
  • Patent number: 11252528
    Abstract: A system and method for providing low interaural coherence at low frequencies is disclosed. In some embodiments, the system may include a reverberator and a low-frequency interaural coherence control system. The reverberator may include two sets of comb filters, one for the left ear output signal and one for the right ear output signal. The low-frequency interaural coherence control system can include a plurality of sections, each section can be configured to control a certain frequency range of the signals that propagate through the given section. The sections may include a left high-frequency section for the left ear output signal and a right high-frequency section for the right ear output signal. The sections may also include a shared low-frequency section that can output signals to be combined by combiners of the left and right high-frequency sections.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: February 15, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot
  • Patent number: 11250834
    Abstract: Systems and methods for providing accurate and independent control of reverberation properties are disclosed. In some embodiments, a system may include a reverberation processing system, a direct processing system, and a combiner. The reverberation processing system can include a reverb initial power (RIP) control system and a reverberator. The RIP control system can include a reverb initial gain (RIG) and a RIP corrector. The RIG can be configured to apply a RIG value to the input signal, and the RIP corrector can be configured to apply a RIP correction factor to the signal from the RIG. The reverberator can be configured to apply reverberation effects to the signal from the RIP control system. In some embodiments, one or more values and/or correction factors can be calculated and applied such that the signal output from a component in the reverberation processing system is normalized to a predetermined value (e.g., unity (1.0)).
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: February 15, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Publication number: 20220038840
    Abstract: Examples of the disclosure describe systems and methods for presenting an audio signal to a user of a wearable head device. According to an example method, a source location corresponding to the audio signal is identified. An acoustic axis corresponding to the audio signal is determined. For each of a respective left and right ear of the user, an angle between the acoustic axis and the respective ear is determined. For each of the respective left and right ear of the user, a virtual speaker position, of a virtual speaker array, is determined, the virtual speaker position collinear with the source location and with a position of the respective ear. The virtual speaker array includes a plurality of virtual speaker positions, each virtual speaker position of the plurality located on the surface of a sphere concentric with the user's head, the sphere having a first radius.
    Type: Application
    Filed: August 12, 2021
    Publication date: February 3, 2022
    Inventors: Remi Samuel AUDFRAY, Jean-Marc JOT, Samuel Charles DICKER, Mark Brandon HERTENSTEINER, Justin Dan MATHEW, Anastasia Andreyevna TAJIK, Nicholas John LaMARTINA
  • Patent number: 11122383
    Abstract: Examples of the disclosure describe systems and methods for presenting an audio signal to a user of a wearable head device. According to an example method, a source location corresponding to the audio signal is identified. An acoustic axis corresponding to the audio signal is determined. For each of a respective left and right ear of the user, an angle between the acoustic axis and the respective ear is determined. For each of the respective left and right ear of the user, a virtual speaker position, of a virtual speaker array, is determined, the virtual speaker position collinear with the source location and with a position of the respective ear. The virtual speaker array includes a plurality of virtual speaker positions, each virtual speaker position of the plurality located on the surface of a sphere concentric with the user's head, the sphere having a first radius.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: September 14, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker, Mark Brandon Hertensteiner, Justin Dan Mathew, Anastasia Andreyevna Tajik, Nicholas John LaMartina
  • Publication number: 20210258715
    Abstract: Disclosed herein are systems and methods for efficiently rendering audio. A method may include receiving a request to present a first audio track, wherein the first audio track is based on a first audio model comprising a shared model component and a first model component; receiving a request to present a second audio track, wherein the second audio track is based on a second audio model comprising the shared model component and a second model component; rendering a sound based on the first audio track, the second audio track, the shared model component, the first model component, and the second model component; and presenting, via one or more speakers, the an audio signal comprising the rendered sound.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 19, 2021
    Inventors: Remi Samuel AUDFRAY, Mark Brandon HERTENSTEINER, Samuel Charles DICKER, Blaine Ivin WOOD, Michael Z. LAND
  • Publication number: 20210243546
    Abstract: Systems and methods of presenting an output audio signal to a listener located at a first location in a virtual environment are disclosed. According to embodiments of a method, an input audio signal is received. For each sound source of a plurality of sound sources in the virtual environment, a respective first intermediate audio signal corresponding to the input audio signal is determined, based on a location of the respective sound source in the virtual environment, and the respective first intermediate audio signal is associated with a first bus. For each of the sound sources of the plurality of sound sources in the virtual environment, a respective second intermediate audio signal is determined. The respective second intermediate audio signal corresponds to a reverberation of the input audio signal in the virtual environment.
    Type: Application
    Filed: February 12, 2021
    Publication date: August 5, 2021
    Inventors: Remi Samuel AUDFRAY, Jean-Marc Jot, Samuel Charles Dicker
  • Publication number: 20210176588
    Abstract: Disclosed herein are systems and methods for storing, organizing, and maintaining acoustic data for mixed reality systems. A system may include one or more sensors of a head-wearable device, a speaker of the head-wearable device, and one or more processors configured to execute a method. A method for execution by the one or more processors may include receiving a request to present an audio signal. An environment may be identified via the one or more sensors of the head-wearable device. One or more audio model components associated with the environment may be retrieved. A first audio model may be generated based on the audio model components. A second audio model may be generated based on the first audio model. A modified audio signal may be determined based on the second audio model and based on the request to present an audio signal. The modified audio signal may be presented via the speaker of the head-wearable device.
    Type: Application
    Filed: December 4, 2020
    Publication date: June 10, 2021
    Applicants: Magic Leap, Inc., Magic Leap, Inc.
    Inventors: Remi Samuel AUDFRAY, Mark Brandon HERTENSTEINER, Samuel Charles DICKER, Blaine Ivin WOOD, Michael Z. LAND, Jean-Marc JOT
  • Publication number: 20210160616
    Abstract: A method of processing an audio signal is disclosed. According to embodiments of the method, magnitude response information of a prototype filter is determined. The magnitude response information includes a plurality of gain values, at least one of which includes a first gain corresponding to a first frequency. The magnitude response information of the prototype filter is stored. The magnitude response information of the prototype filter at the first frequency is retrieved. Gains are computed for a plurality of control frequencies based on the retrieved magnitude response information of the prototype filter at the first frequency, and the computed gains are applied to the audio signal.
    Type: Application
    Filed: December 3, 2020
    Publication date: May 27, 2021
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Publication number: 20210160650
    Abstract: A system and method for providing low interaural coherence at low frequencies is disclosed. In some embodiments, the system may include a reverberator and a low-frequency interaural coherence control system. The reverberator may include two sets of comb filters, one for the left ear output signal and one for the right ear output signal. The low-frequency interaural coherence control system can include a plurality of sections, each section can be configured to control a certain frequency range of the signals that propagate through the given section. The sections may include a left high-frequency section for the left ear output signal and a right high-frequency section for the right ear output signal. The sections may also include a shared low-frequency section that can output signals to be combined by combiners of the left and right high-frequency sections.
    Type: Application
    Filed: October 6, 2020
    Publication date: May 27, 2021
    Inventors: Remi Samuel AUDFRAY, Jean-Marc JOT
  • Publication number: 20210152970
    Abstract: Systems and methods of presenting an output audio signal to a listener located at a first location in a virtual environment are disclosed. According to embodiments of a method, an input audio signal is received. For each sound source of a plurality of sound sources in the virtual environment, a respective first intermediate audio signal corresponding to the input audio signal is determined, based on a location of the respective sound source in the virtual environment, and the respective first intermediate audio signal is associated with a first bus. For each of the sound sources of the plurality of sound sources in the virtual environment, a respective second intermediate audio signal is determined. The respective second intermediate audio signal corresponds to a reflection of the input audio signal in a surface of the virtual environment.
    Type: Application
    Filed: November 6, 2020
    Publication date: May 20, 2021
    Inventors: Jean-Marc JOT, Samuel Charles Dicker, Brian Lloyd Schmidt, Remi Samuel Audfray
  • Patent number: 11012778
    Abstract: A method of processing an audio signal is disclosed. According to embodiments of the method, magnitude response information of a prototype filter is determined. The magnitude response information includes a plurality of gain values, at least one of which includes a first gain corresponding to a first frequency. The magnitude response information of the prototype filter is stored. The magnitude response information of the prototype filter at the first frequency is retrieved. Gains are computed for a plurality of control frequencies based on the retrieved magnitude response information of the prototype filter at the first frequency, and the computed gains are applied to the audio signal.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: May 18, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Patent number: 10952010
    Abstract: Systems and methods of presenting an output audio signal to a listener located at a first location in a virtual environment are disclosed. According to embodiments of a method, an input audio signal is received. For each sound source of a plurality of sound sources in the virtual environment, a respective first intermediate audio signal corresponding to the input audio signal is determined, based on a location of the respective sound source in the virtual environment, and the respective first intermediate audio signal is associated with a first bus. For each of the sound sources of the plurality of sound sources in the virtual environment, a respective second intermediate audio signal is determined. The respective second intermediate audio signal corresponds to a reverberation of the input audio signal in the virtual environment.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: March 16, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Publication number: 20210065675
    Abstract: Systems and methods for providing accurate and independent control of reverberation properties are disclosed. In some embodiments, a system may include a reverberation processing system, a direct processing system, and a combiner. The reverberation processing system can include a reverb initial power (RIP) control system and a reverberator. The RIP control system can include a reverb initial gain (RIG) and a RIP corrector. The RIG can be configured to apply a RIG value to the input signal, and the RIP corrector can be configured to apply a RIP correction factor to the signal from the RIG. The reverberator can be configured to apply reverberation effects to the signal from the RIP control system. In some embodiments, one or more values and/or correction factors can be calculated and applied such that the signal output from a component in the reverberation processing system is normalized to a predetermined value (e.g., unity (1.0)).
    Type: Application
    Filed: September 14, 2020
    Publication date: March 4, 2021
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker
  • Publication number: 20210058728
    Abstract: Systems and methods for rendering audio signals are disclosed. In some embodiments, a method may receive an input signal including a first portion and the second portion. A first processing stage comprising a first filter is applied to the first portion to generate a first filtered signal. A second processing stage comprising a second filter is applied to the first portion to generate a second filtered signal. A third processing stage comprising a third filter is applied to the second portion to generate a third filtered signal. A fourth processing stage comprising a fourth filter is applied to the second portion to generate a fourth filtered signal. A first output signal is determined based on a sum of the first filtered signal and the third filtered signal. A second output signal is determined based on a sum of the second filtered signal and the fourth filtered signal.
    Type: Application
    Filed: August 6, 2020
    Publication date: February 25, 2021
    Inventors: Remi Samuel AUDFRAY, Jean-Marc JOT, Samuel Chrles DICKER
  • Patent number: 10887694
    Abstract: A method of processing an audio signal is disclosed. According to embodiments of the method, magnitude response information of a prototype filter is determined. The magnitude response information includes a plurality of gain values, at least one of which includes a first gain corresponding to a first frequency. The magnitude response information of the prototype filter is stored. The magnitude response information of the prototype filter at the first frequency is retrieved. Gains are computed for a plurality of control frequencies based on the retrieved magnitude response information of the prototype filter at the first frequency, and the computed gains are applied to the audio signal.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: January 5, 2021
    Assignee: Magic Leap, Inc.
    Inventors: Remi Samuel Audfray, Jean-Marc Jot, Samuel Charles Dicker