Patents by Inventor Remi Villenave

Remi Villenave has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12098352
    Abstract: An in vitro microfluidic “organ-on-chip” device is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a stem cell-based Lung-on-Chip is described. This in vitro microfluidic system can be used for modeling differentiation of cells on-chip into lung cells, e.g., a lung (Lung-On-Chip), bronchial (Airway-On-Chip; small-Airway-On-Chip), alveolar sac (Alveolar-On-Chip), etc., for use in modeling disease states of derived tissue, i.e. as healthy, pre-disease and diseased tissues. Additionally, stem cells under differentiation protocols for deriving (producing) differentiated lung cells off-chips may be seeded onto microfluidic devices at any desired point during the in vitro differentiation pathway for further differentiation on-chip or placed on-chip before, during or after terminal differentiation.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: September 24, 2024
    Assignee: EMULATE, INC.
    Inventors: Janna Nawroth, Riccardo Barrile, David Conegliano, Remi Villenave, Carolina Lucchesi, Justin Nguyen, Antonio Varone, Catherine Karalis, Geraldine Hamilton
  • Publication number: 20240309331
    Abstract: The present invention relates to a combination of microbes, cell culture systems and microfluidic fluidic systems for use in providing a human Intestine On-Chip with optimal intestinal motility. More specifically, in some embodiments, a microfluidic chip containing intestinal epithelial cells co-cultured with intestinal endothelial cells in the presence of bacteria, such as probiotic bacteria, may find use in providing an Intestine-On-Chip for testing intestinal motility function. In some embodiments, an Intestine On-Chip may be used for identifying (testing) therapeutic compounds continuing probiotic microbes or compounds for inducing intestinal motility for use in treating gastrointestinal disorders or diseases related to intestinal function.
    Type: Application
    Filed: February 29, 2024
    Publication date: September 19, 2024
    Inventors: S. Jordan Kerns, Catherine Karalis, Janna Nawroth, Remi Villenave, Jenifer Obrigewitch, Doris Roth, Michael Salmon, Athanasia Apostolou, David Conegliano
  • Publication number: 20240248077
    Abstract: Provided herein relates to systems and methods for producing and using a body having a central channel separated by one or more membranes. The membrane(s) are configured to divide the central channel into at least one mesochannel and at least one microchannel. The height of the mesochannel is substantially greater than the height of the microchannel. A gaseous fluid can be applied through the mesochannel while a liquid fluid flowing through the microchannel. The systems and methods described herein can be used for various applications, including, e.g., growth and differentiation of primary cells such as human lung cells, as well as any other cells requiring low shear and/also stratified structures, or simulation of a microenvironment in living tissues and/or organs (to model physiology or disease states, and/or to identify therapeutic agents and/or vaccines). The systems and methods can also permit co-culture with one or more different cell types.
    Type: Application
    Filed: February 8, 2024
    Publication date: July 25, 2024
    Inventors: Donald E. Ingber, Kambez Hajipouran Benam, Remi Villenave, Geraldine A. Hamilton, Bryan Hassell, Christopher D. Hinojosa, Carolina Lucchesi
  • Patent number: 11940441
    Abstract: Provided herein relates to systems and methods for producing and using a body having a central channel separated by one or more membranes. The membrane(s) are configured to divide the central channel into at least one mesochannel and at least one microchannel. The height of the mesochannel is substantially greater than the height of the microchannel. A gaseous fluid can be applied through the mesochannel while a liquid fluid flowing through the microchannel. The systems and methods described herein can be used for various applications, including, e.g., growth and differentiation of primary cells such as human lung cells, as well as any other cells requiring low shear and/also stratified structures, or simulation of a microenvironment in living tissues and/or organs (to model physiology or disease states, and/or to identify therapeutic agents and/or vaccines). The systems and methods can also permit co-culture with one or more different cell types.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 26, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: Donald E. Ingber, Kambez Hajipouran Benam, Remi Villenave, Geraldine A. Hamilton, Bryan Hassell, Christopher D. Hinojosa, Carolina Lucchesi
  • Publication number: 20240084235
    Abstract: An organomimetic device includes a microfluidic device that can be used to culture cells in its microfluidic channels. The organomimetic device can be part of dynamic system that can apply mechanical forces to the cells by modulating the microfluidic device and the flow of fluid through the microfluidic channels. The membrane in the organomimetic device can be modulated mechanically via pneumatic means and/or mechanical means. The organomimetic device can be manufactured by the fabrication of individual components separately, for example, as individual layers that can be subsequently laminated together.
    Type: Application
    Filed: September 19, 2023
    Publication date: March 14, 2024
    Inventors: Jose Fernandez-Alcon, Norman Wen, Richard Novak, Donald E. Ingber, Geraldine A. Hamilton, Christopher Hinojosa, Karel Domansky, Daniel Levner, Guy Thompson, II, Kambez Hajipouran Benam, Remi Villenave, Thomas Umundum, Alfred Paris, Georg Bauer
  • Publication number: 20240024873
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Patent number: 11833512
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: December 5, 2023
    Assignee: EMULATE, INC.
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Publication number: 20230287355
    Abstract: The present invention relates to microfluidic fluidic systems and methods for the in vitro modeling diseases of the lung and small airway. In one embodiment, the invention relates to a system for testing responses of a microfluidic Small Airway-on-Chip infected with one or more infectious agents (e.g. respiratory viruses) as a model of respiratory disease exacerbation (e.g. asthma exacerbation). In one embodiment, this disease model on a microfluidic chip allows for a) the testing of anti-inflammatory and/or anti-viral compounds introduced into the system, as well as b) the monitoring of the participation, recruitment and/or movement of immune cells, including the transmigration of cells. In particular, this system provides, in one embodiment, an in-vitro platform for modeling severe asthma as “Severe Asthma-on-Chip.” In some embodiments, this invention provides a model of viral-induced asthma in humans for use in identifying potentially effective treatments.
    Type: Application
    Filed: December 19, 2022
    Publication date: September 14, 2023
    Inventors: Remi Villenave, Carolina Lucchesi, Justin Nguyen, Catherine Karalis, Geraldine Hamilton, Buket Baddal, Michael Salmon
  • Patent number: 11542476
    Abstract: The present invention relates to microfluidic fluidic systems and methods for the in vitro modeling diseases of the lung and small airway. In one embodiment, the invention relates to a system for testing responses of a microfluidic Small Airway-on-Chip infected with one or more infectious agents (e.g. respiratory viruses) as a model of respiratory disease exacerbation (e.g. asthma exacerbation). In one embodiment, this disease model on a microfluidic chip allows for a) the testing of anti-inflammatory and/or anti-viral compounds introduced into the system, as well as b) the monitoring of the participation, recruitment and/or movement of immune cells, including the transmigration of cells. In particular, this system provides, in one embodiment, an in-vitro platform for modeling severe asthma as “Severe Asthma-on-Chip.” In some embodiments, this invention provides a model of viral-induced asthma in humans for use in identifying potentially effective treatments.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: January 3, 2023
    Assignee: EMULATE, INC.
    Inventors: Remi Villenave, Carolina Lucchesi, Justin Nguyen, Catherine Karalis, Geraldine Hamilton, Buket Baddal, Michael Salmon
  • Publication number: 20220106547
    Abstract: The present invention relates to the use of gels for cell cultures, including but not limited to microfluidic devices and transwell devices, for culturing cells, such as organ cells, e.g. airway cells, intestinal cells, etc., and co-culturing cells, (e.g. parenchymal cells and endothelial cells, etc). As one example, the use of gels results in improved lung cell cultures, such as when using transwells and microfluidic devices, (e.g. for culturing healthy airway epithelial cells, culturing diseased airway epithelial cells, e.g., CF epithelial cells that are ciliated). The present invention relates to fluidic devices, methods and systems for use with gel layers within a microfluidic device. In particular, a partial gel layer is disposed within a microchannel of a microfluidic device. For example, a partial gel layer has a thickness ranging between approximately 20-100 ?m. A dilute partial gel layer of less than 100 ?m may be formed from a polymer solution of 0.5 mg/ml.
    Type: Application
    Filed: October 29, 2021
    Publication date: April 7, 2022
    Inventors: Debora Barreiros Petropolis, Remi Villenave, Janna Nawroth, Tanvi Shroff, S. Jordan Kerns, Antonio Varone
  • Patent number: 11119093
    Abstract: Provided herein relates to systems and methods for producing and using a body having a central channel separated by one or more membranes. The membrane(s) are configured to divide the central channel into at least one mesochannel and at least one microchannel. The height of the mesochannel is substantially greater than the height of the microchannel. A gaseous fluid can be applied through the mesochannel while a liquid fluid flowing through the microchannel. The systems and methods described herein can be used for various applications, including, e.g., growth and differentiation of primary cells such as human lung cells, as well as any other cells requiring low shear and/also stratified structures, or simulation of a microenvironment in living tissues and/or organs (to model physiology or disease states, and/or to identify therapeutic agents and/or vaccines). The systems and methods can also permit co-culture with one or more different cell types.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: September 14, 2021
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Donald E. Ingber, Kambez Hajipouran Benam, Remi Villenave, Geraldine A. Hamilton, Bryan Hassell, Christopher D. Hinojosa, Carolina Lucchesi
  • Publication number: 20210229097
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 29, 2021
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Patent number: 11059041
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: July 13, 2021
    Assignee: Emulate, Inc.
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Publication number: 20210115406
    Abstract: The present invention relates to a combination of microbes, cell culture systems and microfluidic fluidic systems for use in providing a human Intestine On-Chip with optimal intestinal motility. More specifically, in some embodiments, a microfluidic chip containing intestinal epithelial cells co-cultured with intestinal endothelial cells in the presence of bacteria, such as probiotic bacteria, may find use in providing an Intestine-On-Chip for testing intestinal motility function. In some embodiments, an Intestine On-Chip may be used for identifying (testing) therapeutic compounds continuing probiotic microbes or compounds for inducing intestinal motility for use in treating gastrointestinal disorders or diseases related to intestinal function.
    Type: Application
    Filed: November 4, 2020
    Publication date: April 22, 2021
    Inventors: S. Jordan Kerns, Catherine Karalis, Janna Nawroth, Remi Villenave, Jenifer Obrigewitch, Doris Roth, Michael Salmon, Athanasia Apostolou, David Conegliano
  • Publication number: 20210062129
    Abstract: An in vitro microfluidic “organ-on-chip” device is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a stem cell-based Lung-on-Chip is described. This in vitro microfluidic system can be used for modeling differentiation of cells on-chip into lung cells, e.g., a lung (Lung-On-Chip), bronchial (Airway-On-Chip; small-Airway-On-Chip), alveolar sac (Alveolar-On-Chip), etc., for use in modeling disease states of derived tissue, i.e. as healthy, pre-disease and diseased tissues. Additionally, stem cells under differentiation protocols for deriving (producing) differentiated lung cells off-chips may be seeded onto microfluidic devices at any desired point during the in vitro differentiation pathway for further differentiation on-chip or placed on-chip before, during or after terminal differentiation.
    Type: Application
    Filed: August 3, 2020
    Publication date: March 4, 2021
    Inventors: Janna Nawroth, Riccardo Barrile, David Conegliano, Remi Villenave, Carolina Carolina, Justin Nguyen, Antonio Varone, Catherine Karalis, Geraldine Hamilton
  • Publication number: 20210031197
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Application
    Filed: September 17, 2020
    Publication date: February 4, 2021
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Publication number: 20210003561
    Abstract: Provided herein relates to systems and methods for producing and using a body having a central channel separated by one or more membranes. The membrane(s) are configured to divide the central channel into at least one mesochannel and at least one microchannel. The height of the mesochannel is substantially greater than the height of the microchannel. A gaseous fluid can be applied through the mesochannel while a liquid fluid flowing through the microchannel. The systems and methods described herein can be used for various applications, including, e.g., growth and differentiation of primary cells such as human lung cells, as well as any other cells requiring low shear and/also stratified structures, or simulation of a microenvironment in living tissues and/or organs (to model physiology or disease states, and/or to identify therapeutic agents and/or vaccines). The systems and methods can also permit co-culture with one or more different cell types.
    Type: Application
    Filed: September 11, 2020
    Publication date: January 7, 2021
    Inventors: Donald E. Ingber, Kambez Hajipouran Benam, Remi Villenave, Geraldine A. Hamilton, Bryan Hassell, Christopher D. Hinojosa, Carolina Lucchesi
  • Patent number: 10828638
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: November 10, 2020
    Assignee: Emulate, Inc.
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave
  • Publication number: 20200087628
    Abstract: The present invention relates to microfluidic fluidic systems and methods for the in vitro modeling diseases of the lung and small airway. In one embodiment, the invention relates to a system for testing responses of a microfluidic Small Airway-on-Chip infected with one or more infectious agents (e.g. respiratory viruses) as a model of respiratory disease exacerbation (e.g. asthma exacerbation). In one embodiment, this disease model on a microfluidic chip allows for a) the testing of anti-inflammatory and/or anti-viral compounds introduced into the system, as well as b) the monitoring of the participation, recruitment and/or movement of immune cells, including the transmigration of cells. In particular, this system provides, in one embodiment, an in-vitro platform for modeling severe asthma as “Severe Asthma-on-Chip.” In some embodiments, this invention provides a model of viral-induced asthma in humans for use in identifying potentially effective treatments.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: Remi Villenave, Carolina Lucchesi, Justin Nguyen, Catherine Karalis, Geraldine Hamilton
  • Publication number: 20180185844
    Abstract: An in vitro microfluidic “organ-on-chip” is described herein that mimics the structure and at least one function of specific areas of the epithelial system in vivo. In particular, a multicellular, layered, microfluidic culture is described, allowing for interactions between lamina propria-derived cells and the associated tissue specific epithelial cells and endothelial cells. This in vitro microfluidic system can be used for modeling inflammatory tissue, e.g., autoimmune disorders involving epithelia and diseases involving epithelial layers. These multicellular, layered microfluidic “organ-on-chip”, e.g. “epithelia-on-chip” further allow for comparisons between types of epithelia tissues, e.g., lung (Lung-On-Chip), bronchial (Airway-On-Chip), skin (Skin-On-Chip), cervix (Cervix-On-Chip), blood brain barrier (BBB-On-Chip), etc., in additional to neurovascular tissue, (Brain-On-Chip), and between different disease states of tissue, i.e. healthy, pre-disease and diseased areas.
    Type: Application
    Filed: November 21, 2017
    Publication date: July 5, 2018
    Inventors: S. Jordan Kerns, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Daniel Levner, Carolina Lucchesi, Antonio Varone, Remi Villenave