Patents by Inventor Remigio Perales

Remigio Perales has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240043229
    Abstract: Repulsive force created by actuated permanent magnets is used to levitate and transport heavy loads. A bed of permanent magnets is selectively actuated to levitate an array of magnets positioned above the bed, such that the magnets in the levitated array are opposed to the actuated magnets, and of the same magnetic pole, thereby creating a repulsive force. The actuated magnets are vertically offset from magnets in the bed of permanent magnets that have not been raised, thereby imparting maximum levitation forces to the magnets in the levitated array. These systems can levitate and transport objects over level or sloped surfaces, in a straight path or along curves and corners. A bed of magnets can be attached to the floor, or to a set of moving decks that rearrange themselves in a desired path. Our systems can simulate walking or running, similar to a treadmill or virtual gaming platform.
    Type: Application
    Filed: December 16, 2021
    Publication date: February 8, 2024
    Applicants: SRI International, US Positronix Inc.
    Inventors: John M. Baker, Remigio Perales, Clifford J. P. Gilman
  • Publication number: 20230286552
    Abstract: We use permanent magnets to levitate and transport heavy loads. A bed of permanent magnets is selectively actuated to levitate an array of magnets positioned above the bed, such that the magnets in the levitated array are opposed to the actuated magnets, and of the same magnetic pole, thereby creating a repulsive force. The actuated magnets are offset from magnets in the bed of permanent magnets that have not been actuated, thereby imparting maximum levitation forces to the magnets in the levitated array. Our systems use magnetic repulsive force for levitating and transporting goods across a warehouse, simulating walking or running such as on a treadmill or in a virtual gaming platform, and for transporting people such as on a moving sidewalk. Our systems are electrical machines for holding or levitating devices using magnetic levitation, and also use permanent magnets to transmit power wirelessly.
    Type: Application
    Filed: August 11, 2021
    Publication date: September 14, 2023
    Applicants: US Positronix Inc., SRI International
    Inventors: John M. Baker, Remigio Perales, Clifford J. P. Gilman
  • Publication number: 20230119952
    Abstract: Rapid pulse programming of a seed, to obtain improved germination probability, and increased root mass, and crop yield, by illuminating the seed with radiation of a wavelength distribution from 300 nm to 20 microns, with a minimum average irradiance of 0.2 Watts/cm2 and a maximum average irradiance of 7 Watts/cm2, and having a narrow specific range of cumulative illumination energy from ½ Joules/cm2 to 3 Joules/cm2 or a higher transition point cumulative illumination energy, so as to specifically engage an irradiance-sensitive and energy-sensitive hidden stimulative exposure response in the seed and so as to avoid illumination of higher cumulative illumination energy that would cause a different and destructive exposure response in the seed. Preferred wavelengths include one or both of Medium Wavelength Infrared (MWIR) radiation and an Indigo Region Illumination Distribution (IRID), which may be applied to an illuminated agricultural planter.
    Type: Application
    Filed: October 17, 2022
    Publication date: April 20, 2023
    Applicant: Global Neighbor, Inc.
    Inventors: Jonathan A Jackson, Patrick A Jackson, Mark J Elting, Tymothy Jay Henry, Remigio Perales
  • Publication number: 20220008889
    Abstract: A change of state of weed seeds to having reduced germination viability in one minute by illuminating a seed in a processing theater to achieve at least one of 0.66 J/cm2 cumulative illumination energy, and 0.06 W/cm2 irradiance, of at least one of an Indigo Region Illumination Distribution (IRID), and Medium Wavelength Infrared (MWIR) radiation, preferably 2-8 microns, with no high energy transfers, scalding, heat shock, cooking or incineration. The MWIR radiation from heated borosilicate glass or glass powder at just under 500 C offered a peak MWIR emission of 3.75 microns, and was unexpectedly effective, and can be used in a radiant and transmissive weed seed accumulator transport belt. The process can be incorporated into a harvester combine to convert a tailings flow prior to discharge on an agricultural field. An illuminated harvest combine using an illuminator according to the invention allows reduction of the weed seed bank.
    Type: Application
    Filed: July 7, 2020
    Publication date: January 13, 2022
    Inventors: Jonathan A. JACKSON, Christopher J. HOFFMAN, Norman E. NOVOTNEY, Joseph M. CARROLL, Patrick A. JACKSON, Remigio PERALES, Mark J. ELTING
  • Patent number: 10608830
    Abstract: The disclosure generally relates to power over fiber technology configured to provide electrical power and communications via fiber to one or more sensors of one or more varieties. More particularly, the disclosure relates to a sensor system comprising a laser data module operatively connected to a powered sensor module, wherein the powered sensor module receives a light, converts the light to electrical power, and powers a sensor with the electrical power, and wherein the powered sensor module transmits signals from the sensor to a laser data module.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: March 31, 2020
    Assignee: MH GOPOWER COMPANY LIMITED
    Inventors: Mei-huan Yang, Cheng-liang Wu, Terry Zahuranec, Remigio Perales, Kun-Hsien Chen, Wei-sheng Chao, Ying-lin Tseng, Te-chih Huang, Jheng-syuan Shih, Mu-kai Su
  • Patent number: 10553736
    Abstract: Provided is a photovoltaic power converter receiver, including a photovoltaic cell, a waveguide coupled to the photovoltaic cell, and an optical transmission device of which an end is coupled to the waveguide for transmitting an optical wave to the photovoltaic cell through the waveguide, wherein the end of the optical transmission device is offset from a longitudinal central axis of the waveguide by a distance Doffset.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: February 4, 2020
    Assignee: MH GO POWER COMPANY LIMITED
    Inventors: Mei-huan Yang, Terry Zahuranec, Cheng-Liang Wu, Remigio Perales, Wei-Sheng Chao, Kuo-Hsien Wu, Ying-Lin Tseng, Mu-Kai Su, Jonathan Jackson
  • Publication number: 20190222211
    Abstract: This disclosure presents a power switching module combining a novel gate driver with a photonic isolated power source which can output a high voltage and high power at the same time, and thus can drive a power semiconductor device. The disclosed power switching module could simplify the switched mode power supply structure to (1) replace the isolated power supply module; (2) simplify circuitry of the gate driver by integrating gate driver signaling opto-electronics; and (3) provide a module with power semiconductor device under switched mode power supply structure.
    Type: Application
    Filed: January 14, 2019
    Publication date: July 18, 2019
    Inventors: Mei-huan Yang, Cheng-liang Wu, Remigio Perales, Kun-hsien Chen, Wei-sheng Chao, Ying-lin Tseng, I-tsung Chen
  • Publication number: 20180227133
    Abstract: The disclosure generally relates to power over fiber technology configured to provide electrical power and communications via fiber to one or more sensors of one or more varieties. More particularly, the disclosure relates to a sensor system comprising a laser data module operatively connected to a powered sensor module, wherein the powered sensor module receives a light, converts the light to electrical power, and powers a sensor with the electrical power, and wherein the powered sensor module transmits signals from the sensor to a laser data module.
    Type: Application
    Filed: February 5, 2018
    Publication date: August 9, 2018
    Inventors: Mei-huan Yang, Cheng-liang Wu, Terry Zahuranec, Remigio Perales, Kun-Hsien Chen, Wei-sheng Chao, Ying-lin Tseng, Te-chih Huang, Jheng-syuan Shih, Mu-kai Su
  • Patent number: 9866170
    Abstract: Extremely fast dynamic control is allowed for hybrid PV/T (photovoltaic/thermal) distributed power production using concentrated solar power by manipulating the transmissive or reflective state of a capture element or mirror or lens that can pass highly concentrated solar light from one energy conversion device to another, such as a thermal collector and a photovoltaic receiver, such as a vertical multijunction cell array. This allows superior quality electrical backfeed into an electric utility, enhanced plant electrical production revenue, and responsiveness to a multitude of conditions to meet new stringent engineering requirements for distributed power plants. The mirror or lens can be physically articulated using fast changing of a spatial variable, or can be a fixed smart material that changes state. A mechanical jitter or variable state jitter can be applied to the capture element, including at utility electric grid line frequency.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: January 9, 2018
    Assignee: MH GOPOWER COMPANY LIMITED
    Inventors: Mei-huan Yang, Jonathan A. Jackson, Terry Zahuranec, Michael J. Creager, Remigio Perales, Cheng-Liang Wu, Chin-Wei Hsu, Chiun-Yen Tung, Ying-Jie Peng, Ping-Pang Lee, Mark J. Elting
  • Publication number: 20170005216
    Abstract: Provided is a photovoltaic power converter receiver, including a photovoltaic cell, a waveguide coupled to the photovoltaic cell, and an optical transmission device of which an end is coupled to the waveguide for transmitting an optical wave to the photovoltaic cell through the waveguide, wherein the end of the optical transmission device is offset from a longitudinal central axis of the waveguide by a distance Doffset.
    Type: Application
    Filed: July 1, 2015
    Publication date: January 5, 2017
    Inventors: Mei-huan Yang, Terry Zahuranec, Cheng-Liang Wu, Remigio Perales, Wei-Sheng Chao, Kuo-Hsien Wu, Ying-Lin Tseng, Mu-Kai Su, Jonathan Jackson
  • Publication number: 20160126382
    Abstract: An energy conversion device in electrical communication with at least one fin is provided to output multiple voltages. The at least one fin which is originating from inside the energy conversion device, which is formed from a metal contact disposed between energy conversion device components, and which is spaced with a first end contact and a second end contact. A power transistor module includes at least one transistor, a gate driver and the energy conversion device. The gate driver is configured to drive the at least one transistor. The energy conversion device is configured to supply isolated voltages to the gate driver.
    Type: Application
    Filed: June 29, 2015
    Publication date: May 5, 2016
    Inventors: MEI-HUAN YANG, TERRY ZAHURANEC, REMIGIO PERALES, CHENG-LIANG WU, WEI-SHENG CHAO, CHIN-WEI HSU, TE-CHIH HUANG, JHENG-SYUAN SHIH, PEI-YA WANG
  • Publication number: 20160005902
    Abstract: New high energy operating regimes for high intensity energy transfer for beam receiving, signal acquisition, and beam or signal generation for power beaming and wireless power transmission are made possible by new direct thermal pathways for heat sinking, where an energy conversion device comprises a plurality of fins [1] originating from inside the energy conversion device; [2] formed from an energy conversion device component; and where those fins [3] individually support traffic in energy carriers essential to the function of the energy conversion device. This allows high energy thermal interfacing and high intensity energy conversion, such as for receiving and transducing extremely high intensity light shined onto a small surface semiconductor device such as a vertical multijunction photovoltaic receiver. This allows high intensity energy transfer for beam receiving, signal acquisition, and beam or signal generation for high intensity power beaming and wireless power transmission.
    Type: Application
    Filed: October 31, 2014
    Publication date: January 7, 2016
    Applicant: MH Solar Co., LTD.
    Inventors: Chiun-Yen Tung, Mei-huan Yang, Terry Zahuranec, Remigio Perales, Te-Chih Huang, Jheng-Syuan Shih, Cheng-Liang Wu, Chin-Wei Hsu
  • Publication number: 20160005906
    Abstract: Thermal, electrical and/or optical interfacing for three-dimensional optoelectronic devices, such as semiconductor device billets, allows high intensity operation, such as for receiving and transducing extremely high intensity light shined onto a small surface semiconductor optoelectronic device such as a photovoltaic receiver or cell, transducer, waveguide or splitter. This allows high intensity energy transfer for beam receiving, signal acquisition, and beam or signal generation for high intensity power beaming and wireless power transmission. Preferred embodiments include three-dimensional photovoltaic receiver billets capable of receiving thousands of suns intensity or high intensity laser light for power conversion, such as by using edge-illuminated vertical multijunction photovoltaic receivers. Heat sink holding structures assist in thermal and electromagnetic communication with opposing billet surfaces.
    Type: Application
    Filed: July 3, 2014
    Publication date: January 7, 2016
    Applicant: MH Solar Co. LTD.
    Inventors: Chiun-Yen Tung, Mei-huan Yang, Terry Zahuranec, Remigio Perales, Te-Chih Huang, Jheng-Syuan Shih, Cheng-Liang Wu, Chin-Wei Hsu, Mark J. Elting
  • Publication number: 20150372640
    Abstract: Extremely fast dynamic control is allowed for hybrid PV/T (photovoltaic/thermal) distributed power production using concentrated solar power by manipulating the transmissive or reflective state of a capture element or mirror or lens that can pass highly concentrated solar light from one energy conversion device to another, such as a thermal collector and a photovoltaic receiver, such as a vertical multijunction cell array. This allows superior quality electrical backfeed into an electric utility, enhanced plant electrical production revenue, and responsiveness to a multitude of conditions to meet new stringent engineering requirements for distributed power plants. The mirror or lens can be physically articulated using fast changing of a spatial variable, or can be a fixed smart material that changes state. A mechanical jitter or variable state jitter can be applied to the capture element, including at utility electric grid line frequency.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 24, 2015
    Applicant: MH Solar Co. LTD.
    Inventors: Mei-huan Yang, Jonathan A. Jackson, Terry Zahuranec, Michael J. Creager, Remigio Perales, Cheng-Liang Wu, Chin-Wei Hsu, Chiun-Yen Tung, Ying-Jie Peng, Ping-Pang Lee, Mark J. Elting
  • Publication number: 20150149104
    Abstract: A system of sensors including 1) an accelerometer, 2) a magnetometer, and 3) a gyroscope, combined with a zero crossing error correction algorithm, as well as a method of using those sensors with the zero crossing error correction algorithm, for orientation motion tracking applications, including sports and athletics training, animation for motion picture and computer gaming industry, 3D joysticks, and peripherals for computer gaming industry, as well as medical and health diagnosis and monitoring systems.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 28, 2015
    Inventors: John Baker, Remigio Perales