Patents by Inventor Remy Berthelon

Remy Berthelon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230411450
    Abstract: The present description concerns a method of manufacturing a device comprising a first portion having an array of memory cells formed therein and a second portion having transistors formed therein, the method comprising: a. the forming of first insulating trenches separating from one another the substrate regions of a same cell row, and b. the forming of second trenches separating from one another the regions of a same cell column, the second trenches having a height greater than the height of the first trenches, step a. comprising the independent forming of a lower portion and of an upper portion of each first trench, the forming of the upper portions comprising the deposition of a first insulating layer, the etching of the portions of the first insulating layer which are not located on the upper portions.
    Type: Application
    Filed: June 6, 2023
    Publication date: December 21, 2023
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Remy BERTHELON, Olivier WEBER
  • Patent number: 11800821
    Abstract: The present disclosure concerns a phase-change memory manufacturing method and a phase-change memory device. The method includes forming a first insulating layer in cavities located vertically in line with strips of phase-change material, and anisotropically etching the portions of the first insulating layer located at the bottom of the cavities; and a phase-change memory device including a first insulating layer against lateral walls of cavities located vertically in line with strips of phase-change material.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: October 24, 2023
    Assignees: STMicroelectronics (Crolles 2) SAS, STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Philippe Boivin, Daniel Benoit, Remy Berthelon
  • Publication number: 20230329008
    Abstract: A method for manufacturing an electronic chip includes providing a semiconductor layer located on an insulator covering a semiconductor substrate. First and second portions of the semiconductor layer are oxidized up to the insulator. Stresses are generated in third portions of the semiconductor layer, and each of the third portions extend between two portions of the semiconductor layer that are oxidized. Cavities are formed which extend at least to the substrate through the second portions and the insulator. Bipolar transistors are formed in at least part of the cavities and first field effect transistors are formed in and on the third portions. Phase change memory points are coupled to the bipolar transistors.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Remy BERTHELON, Olivier WEBER
  • Publication number: 20230309423
    Abstract: An electronic chip includes at least a first array of first elementary cells and a second array of second elementary cells. The first and second elementary cells form two types of phase change memory having a storage element formed by a volume of phase change material having either a crystalline state or an amorphous state depending on the bit stored. Each first elementary cell includes a volume of a first phase change material, and each second elementary cell includes a volume of a second phase change material that is different from the first material. Each elementary cell includes a heating connector configured for the passage of a heating current adapted to cause a phase change of the volume of phase change material of the elementary cell.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 28, 2023
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Remy BERTHELON, Franck ARNAUD
  • Patent number: 11723220
    Abstract: A method for manufacturing an electronic chip includes providing a semiconductor layer located on an insulator covering a semiconductor substrate. First and second portions of the semiconductor layer are oxidized up to the insulator. Stresses are generated in third portions of the semiconductor layer, and each of the third portions extend between two portions of the semiconductor layer that are oxidized. Cavities are formed which extend at least to the substrate through the second portions and the insulator. Bipolar transistors are formed in at least part of the cavities and first field effect transistors are formed in and on the third portions. Phase change memory points are coupled to the bipolar transistors.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: August 8, 2023
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Remy Berthelon, Olivier Weber
  • Patent number: 11690303
    Abstract: An electronic chip includes at least a first array of first elementary cells and a second array of second elementary cells. The first and second elementary cells form two types of phase change memory having a storage element formed by a volume of phase change material having either a crystalline state or an amorphous state depending on the bit stored. Each first elementary cell includes a volume of a first phase change material, and each second elementary cell includes a volume of a second phase change material that is different from the first material. Each elementary cell includes a heating connector configured for the passage of a heating current adapted to cause a phase change of the volume of phase change material of the elementary cell.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: June 27, 2023
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventors: Remy Berthelon, Franck Arnaud
  • Publication number: 20220336736
    Abstract: The present disclosure concerns a phase-change memory manufacturing method and a phase-change memory device. The method includes forming a first insulating layer in cavities located vertically in line with strips of phase-change material, and anisotropically etching the portions of the first insulating layer located at the bottom of the cavities; and a phase-change memory device including a first insulating layer against lateral walls of cavities located vertically in line with strips of phase-change material.
    Type: Application
    Filed: July 1, 2022
    Publication date: October 20, 2022
    Applicants: STMicroelectronics (Crolles 2) SAS, STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Philippe BOIVIN, Daniel BENOIT, Remy BERTHELON
  • Patent number: 11411177
    Abstract: The present disclosure concerns a phase-change memory manufacturing method and a phase-change memory device. The method includes forming a first insulating layer in cavities located vertically in line with strips of phase-change material, and anisotropically etching the portions of the first insulating layer located at the bottom of the cavities; and a phase-change memory device including a first insulating layer against lateral walls of cavities located vertically in line with strips of phase-change material.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: August 9, 2022
    Assignees: STMicroelectronics (Crolles 2) SAS, STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Philippe Boivin, Daniel Benoit, Remy Berthelon
  • Publication number: 20210343788
    Abstract: A method for manufacturing an electronic chip includes providing a semiconductor layer located on an insulator covering a semiconductor substrate. First and second portions of the semiconductor layer are oxidized up to the insulator. Stresses are generated in third portions of the semiconductor layer, and each of the third portions extend between two portions of the semiconductor layer that are oxidized. Cavities are formed which extend at least to the substrate through the second portions and the insulator. Bipolar transistors are formed in at least part of the cavities and first field effect transistors are formed in and on the third portions. Phase change memory points are coupled to the bipolar transistors.
    Type: Application
    Filed: April 29, 2021
    Publication date: November 4, 2021
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Remy BERTHELON, Olivier WEBER
  • Publication number: 20210305502
    Abstract: An electronic chip includes at least a first array of first elementary cells and a second array of second elementary cells. The first and second elementary cells form two types of phase change memory having a storage element formed by a volume of phase change material having either a crystalline state or an amorphous state depending on the bit stored. Each first elementary cell includes a volume of a first phase change material, and each second elementary cell includes a volume of a second phase change material that is different from the first material. Each elementary cell includes a heating connector configured for the passage of a heating current adapted to cause a phase change of the volume of phase change material of the elementary cell.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 30, 2021
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Remy BERTHELON, Franck ARNAUD
  • Publication number: 20200381617
    Abstract: The present disclosure concerns a phase-change memory manufacturing method and a phase-change memory device. The method includes forming a first insulating layer in cavities located vertically in line with strips of phase-change material, and anisotropically etching the portions of the first insulating layer located at the bottom of the cavities; and a phase-change memory device including a first insulating layer against lateral walls of cavities located vertically in line with strips of phase-change material.
    Type: Application
    Filed: May 20, 2020
    Publication date: December 3, 2020
    Inventors: Philippe BOIVIN, Daniel BENOIT, Remy BERTHELON
  • Patent number: 10777680
    Abstract: Longitudinal trenches extend between and on either side of first and second side-by-side strip areas. Transverse trenches extend from one edge to another edge of the first strip area to define tensilely strained semiconductor slabs in the first strip area, with the second strip area including portions that are compressively strained in the longitudinal direction and/or tensilely strained in the transverse direction. In the first strip area, N-channel MOS transistors are located inside and on top of the semiconductor slabs. In the second strip area, P-channel MOS transistors are located inside and on top of the portions.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: September 15, 2020
    Assignees: STMicroelectronics (Crolles 2) SAS, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Remy Berthelon, Francois Andrieu
  • Patent number: 10741565
    Abstract: The application relates to an integrated circuit with SRAM memory and provided with several superimposed levels of transistors, the integrated circuit including SRAM cells provided with a first transistor and a second transistor belonging to an upper level of transistors and each having a double gate composed of an upper electrode and a lower electrode laid out on either side of a semiconductor layer, a lower gate electrode of the first transistor being connected to a lower gate electrode of the second transistor.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: August 11, 2020
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, STMicroelectronics (Crolles 2) SAS
    Inventors: Francois Andrieu, Remy Berthelon, Bastien Giraud
  • Patent number: 10546929
    Abstract: An integrated circuit includes a substrate; a buried insulating layer; at least one nMOS transistor comprising a semiconductor layer placed above the buried insulating layer; at least one pMOS transistor comprising a semiconductor layer placed above the buried insulating layer; at least one semiconductor groundplane that may be doped or a metal, placed above the substrate and below the buried insulating layer, said buried plane being common to the nMOS transistor and to the pMOS transistor; at least one gate insulator and a gate that is common to the nMOS transistor and to the pMOS transistor and that is located above the channel of these transistors and facing the groundplane, the area of the groundplane at least covering the area of the gate in vertical projection; the nMOS transistor being separated from the pMOS transistor by an isolation defined between the semiconductor layer of the nMOS transistor and the semiconductor layer of the pMOS transistor, the isolation being located in the buried insulating l
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: January 28, 2020
    Assignees: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: François Andrieu, Remy Berthelon
  • Patent number: 10504897
    Abstract: An integrated circuit is provided, including a first pair including a first nMOS transistor and a first pMOS transistor; a second pair including a second nMOS transistor and a second pMOS transistor; the first and second pMOS transistors including a channel that is subjected to compressive stress and made of an SiGe alloy, and a gate of said transistors being positioned at least 250 nm from a border of an active zone of said transistors; a third pair including a third nMOS transistor having a same construction as the first nMOS transistor and a third pMOS transistor having a same construction as the second pMOS transistor and exhibiting a compressive stress that is lower by at least 250 MPa, the gate of said transistors of the third pair being positioned at most 200 nm from the border.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: December 10, 2019
    Assignees: Commissariat A L'Energie Atomique et aux Energies Alternatives, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Francois Andrieu, Remy Berthelon
  • Publication number: 20190363190
    Abstract: Longitudinal trenches extend between and on either side of first and second side-by-side strip areas. Transverse trenches extend from one edge to another edge of the first strip area to define tensilely strained semiconductor slabs in the first strip area, with the second strip area including portions that are compressively strained in the longitudinal direction and/or tensilely strained in the transverse direction. In the first strip area, N-channel MOS transistors are located inside and on top of the semiconductor slabs. In the second strip area, P-channel MOS transistors are located inside and on top of the portions.
    Type: Application
    Filed: August 7, 2019
    Publication date: November 28, 2019
    Applicants: STMicroelectronics (Crolles 2) SAS, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Remy BERTHELON, Francois ANDRIEU
  • Patent number: 10446548
    Abstract: An integrated circuit is provided, including: a first pair including a first nMOS transistor and a first pMOS transistor; a second pair including a second nMOS transistor and a second pMOS transistor; the first and the second nMOS transistors including a channel region made of silicon that is subjected to tensile stress, and their respective gates being positioned at least 250 nm from a border of their active zone; and a third pair including a third nMOS transistor having a same construction as the second nMOS transistor and a third pMOS transistor having a same construction as the first pMOS transistor and having a tensile stress that is lower by at least 250 MPa than the tensile stress of the channel region, respective gates of the transistors of the third pair being positioned at most 200 nm from a border of their active zone.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: October 15, 2019
    Assignees: Commissariat A L'Energie Atomique et aux Energies Alternatives, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Francois Andrieu, Remy Berthelon
  • Publication number: 20190312039
    Abstract: The application relates to an integrated circuit with SRAM memory and provided with several superimposed levels of transistors, the integrated circuit including SRAM cells provided with a first transistor and a second transistor belonging to an upper level of transistors and each having a double gate composed of an upper electrode and a lower electrode laid out on either side of a semiconductor layer, a lower gate electrode of the first transistor being connected to a lower gate electrode of the second transistor.
    Type: Application
    Filed: April 9, 2019
    Publication date: October 10, 2019
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, STMicroelectronics (Crolles 2) SAS
    Inventors: Francois Andrieu, Remy Berthelon, Bastien Giraud
  • Patent number: 10418486
    Abstract: Longitudinal trenches extend between and on either side of first and second side-by-side strips. Transverse trenches extend from one edge to another edge of the first strip to define tensilely strained semiconductor slabs in the first strip, with the second strip including portions that are compressively strained in the longitudinal direction and/or tensilely strained in the transverse direction. In the first strip, N-channel MOS transistors are located inside and on top of the semiconductor slabs. In the second strip, P-channel MOS transistors are located inside and on top of the portions.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: September 17, 2019
    Assignees: STMicroelectronics (Crolles 2) SAS, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Remy Berthelon, Francois Andrieu
  • Patent number: 10263110
    Abstract: A strained semiconductor layer is produced from a semiconductor layer extending on an insulating layer. A thermal oxidization is performed on the semiconductor layer across its entire thickness to form two bars extending in a direction of a transistor width. Insulating trenches are formed in a direction of a transistor length. A strain of the strained semiconductor layer is induced in one implementation before the thermal oxidation is performed. Alternatively, the strain is induced after the thermal oxidation is performed. The insulating trenches serve to release a component of the strain extending in the direction of transistor width. A component of the strain extending in the direction of transistor length is maintained. The bars and trenches delimit an active area of the transistor include source, drain and channel regions.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: April 16, 2019
    Assignees: STMicroelectronics (Crolles 2) SAS, STMicroelectronics SA, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Remy Berthelon, Didier Dutartre, Pierre Morin, Francois Andrieu, Elise Baylac