Patents by Inventor Remy Elbez

Remy Elbez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9816993
    Abstract: Identification, quantification and characterization of biological micro- and nano-systems is enabled by magnetically spinning these natural, non-magnetic systems with the aid of induced magnetization. Biofriendly magnetic micro- and nano-labels enable magnetorotation in extremely weak electromagnetic fields. The spinning of these micromotors can be observed by a simple, CD-like, optical tracking system. The spinning frequency response enables real-time monitoring of single (cancer) cell morphology, with sub-microscopic resolution, yielding previously undeterminable information. Likewise, it enables super-low detection limits for any (cancer) biomarker.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: November 14, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Raoul Kopelman, Remy Elbez, Ariel Hecht, Brandon H. McNaughton
  • Patent number: 8846331
    Abstract: Described herein are various methods, devices and systems for performing asynchronous magnetic bead rotation (AMBR) to detect and monitor cellular growth and/or behavior. Cluster rotation of magnetic particles for AMBR is descried. In particular, described herein are systems for the parallel analysis of multiple wells of a sample plate. Also described herein are methods for controlling the illumination and imaging of rotating magnetic particles.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: September 30, 2014
    Assignee: The Regents of the University of Michigan
    Inventors: Brandon H. McNaughton, Paivo Kinnunen, Raoul Kopelman, Alan Hunt, Roy Clarke, Irene Sinn, Remy Elbez, Theodore Albertson
  • Publication number: 20140248632
    Abstract: Identification, quantification and characterization of biological micro- and nano-systems is enabled by magnetically spinning these natural, non-magnetic systems with the aid of induced magnetization. Biofriendly magnetic micro- and nano-labels enable magnetorotation in extremely weak electromagnetic fields. The spinning of these micromotors can be observed by a simple, CD-like, optical tracking system. The spinning frequency response enables real-time monitoring of single (cancer) cell morphology, with sub-microscopic resolution, yielding previously undeterminable information. Likewise, it enables super-low detection limits for any (cancer) biomarker.
    Type: Application
    Filed: April 11, 2012
    Publication date: September 4, 2014
    Applicant: The Regents of the University of Michigan
    Inventors: Raoul Kopelman, Remy Elbez, Ariel Hecht, Brandon H. McNaughton
  • Publication number: 20120164680
    Abstract: Described herein are various methods, devices and systems for performing asynchronous magnetic bead rotation (AMBR) to detect and monitor cellular growth and/or behavior. Cluster rotation of magnetic particles for AMBR is descried. In particular, described herein are systems for the parallel analysis of multiple wells of a sample plate. Also described herein are methods for controlling the illumination and imaging of rotating magnetic particles.
    Type: Application
    Filed: August 29, 2011
    Publication date: June 28, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Brandon H. McNaughton, Paivo Kinnunen, Raoul Kopelman, Alan Hunt, Roy Clarke, Irene Sinn, Remy Elbez, Theodore Albertson