Patents by Inventor René Oberlin

René Oberlin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9945826
    Abstract: A gas sensor which works according to the principle of thermal conductivity is functionally tested. In the method, a calibration cycle is conducted in which a membrane of the gas sensor is immersed in a fluid calibration medium having a known concentration of a target gas. After the calibration cycle, a measurement chamber of the gas sensor is purged with a purging gas. Then, a measuring cycle is conducted, using a thermal conductivity sensor to measure the target gas in the measurement chamber. Using a calibration baseline established from the calibration cycle and a measurement baseline in the measurement cycle, a baseline comparison value is obtained and compared to a predetermined baseline threshold value. An error message, indicating a malfunction in the purging gas supply, is generated when the baseline comparison value exceeds the predetermined baseline threshold value.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: April 17, 2018
    Assignee: Mettler-Toledo GmbH
    Inventors: René Oberlin, André Möbius
  • Publication number: 20140360245
    Abstract: A gas sensor which works according to the principle of thermal conductivity is functionally tested. In the method, a calibration cycle is conducted in which a membrane of the gas sensor is immersed in a fluid calibration medium having a known concentration of a target gas. After the calibration cycle, a measurement chamber of the gas sensor is purged with a purging gas. Then, a measuring cycle is conducted, using a thermal conductivity sensor to measure the target gas in the measurement chamber. Using a calibration baseline established from the calibration cycle and a measurement baseline in the measurement cycle, a baseline comparison value is obtained and compared to a predetermined baseline threshold value. An error message, indicating a malfunction in the purging gas supply, is generated when the baseline comparison value exceeds the predetermined baseline threshold value.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Inventors: René Oberlin, André Möbius
  • Patent number: 8815077
    Abstract: An electrochemical sensor for measuring the oxygen partial pressure in a process fluid, comprises an electrolyte-filled sensor body, which is covered on one side charged with the process fluid by an oxygen-permeable membrane, a cathode on the membrane, an annular guard electrode surrounding the cathode, which in measuring operation lies at the same potential as the cathode, an anode charged by the electrolyte in the sensor body, a reference electrode charged by the electrolyte in the sensor body, wherein between the anode and cathode a voltage can be applied, which is controlled between the cathode (8) and reference electrode at a constant polarization voltage and the measuring sensor current flowing in measuring operation between the cathode and anode is a measure for the oxygen partial pressure in the process fluid, and a test voltage source which can be switched in a testing mode between the cathode and guard electrode for producing test oxygen in the electrolyte and/or in the process fluid between the
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: August 26, 2014
    Assignee: Knick Elektronische Messgeräte GmbH & Co. KG
    Inventors: Heinz Wohlrab, René Oberlin
  • Publication number: 20120125790
    Abstract: An electrochemical sensor for measuring the oxygen partial pressure in a process fluid, comprises an electrolyte-filled sensor body, which is covered on one side charged with the process fluid by an oxygen-permeable membrane, a cathode on the membrane, an annular guard electrode surrounding the cathode, which in measuring operation lies at the same potential as the cathode, an anode charged by the electrolyte in the sensor body, a reference electrode charged by the electrolyte in the sensor body, wherein between the anode and cathode a voltage can be applied, which is controlled between the cathode (8) and reference electrode at a constant polarization voltage and the measuring sensor current flowing in measuring operation between the cathode and anode is a measure for the oxygen partial pressure in the process fluid, and a test voltage source which can be switched in a testing mode between the cathode and guard electrode for producing test oxygen in the electrolyte and/or in the process fluid between the
    Type: Application
    Filed: June 23, 2010
    Publication date: May 24, 2012
    Inventors: Heinz Wohlrab, René Oberlin
  • Patent number: 7691254
    Abstract: The functioning of an amperometric electrochemical sensor having an electrochemical cell is monitored by the electrochemical cell. A perturbation quantity is imposed on the sensor, which is operated with voltage control at a given polarization voltage. The response to the perturbation is measured and a check value is calculated, using the response under the perturbation as an input value. The check value is compared to a system-dependent limit value. If the check value is larger than the system-dependent limit value, the initial polarization voltage is changed by a predefined voltage increment and the process is repeated, until an optimal polarization voltage has been found, i.e., until the calculated check value is smaller than the system-dependent limit value. A measuring system that serves to carry out the method is also described. An automated embodiment utilizes a computer-supported control- and processing-unit with a data memory and a data-evaluating program.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: April 6, 2010
    Assignee: Mettler-Toledo AG
    Inventor: Rene Oberlin
  • Patent number: 7290434
    Abstract: An exemplary method is disclosed which serves to determine a condition of at least one measuring probe which is integrated in a process vessel of a process system with one or more system stages and which is cleaned from time to time using, for example, CIP- and SIP processes, without uninstalling the measuring probe for the cleaning. The temperature of the measuring probe or of the medium surrounding the measuring probe can be measured by a measuring sensor arranged inside or outside the measuring probe, and the condition of the measuring probe can be determined based on a record of the temperature (TS/M) measured over the time when the measuring probe is in operation. In some cases, the method can include monitoring correct execution of the CIP- and SIP processes.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: November 6, 2007
    Assignee: Mettler-Toledo AG
    Inventors: Jürgen Ammann, Alfred Peer, René Oberlin, Klaus-Dieter Anders, Christian Zwicky
  • Publication number: 20060219575
    Abstract: The functioning of an amperometric electrochemical sensor having an electrochemical cell is monitored by the electrochemical cell. A perturbation quantity is imposed on the sensor, which is operated with voltage control at a given polarization voltage. The response to the perturbation is measured and a check value is calculated, using the response under the perturbation as an input value. The check value is compared to a system-dependent limit value. If the check value is larger than the system-dependent limit value, the initial polarization voltage is changed by a predefined voltage increment and the process is repeated, until an optimal polarization voltage has been found, i.e., until the calculated check value is smaller than the system-dependent limit value. A measuring system that serves to carry out the method is also described. An automated embodiment utilizes a computer-supported control- and processing-unit with a data memory and a data-evaluating program.
    Type: Application
    Filed: March 20, 2006
    Publication date: October 5, 2006
    Applicant: Mettler-Toledo GmbH
    Inventor: Rene OBERLIN
  • Publication number: 20050166660
    Abstract: An exemplary method is disclosed which serves to determine a condition of at least one measuring probe which is integrated in a process vessel of a process system with one or more system stages and which is cleaned from time to time using, for example, CIP- and SIP processes, without uninstalling the measuring probe for the cleaning. The temperature of the measuring probe or of the medium surrounding the measuring probe can be measured by a measuring sensor arranged inside or outside the measuring probe, and the condition of the measuring probe can be determined based on a record of the temperature (TS/M) measured over the time when the measuring probe is in operation. In some cases, the method can include monitoring correct execution of the CIP- and SIP processes.
    Type: Application
    Filed: December 22, 2004
    Publication date: August 4, 2005
    Inventors: Jurgen Ammann, Alfred Peer, Rene Oberlin, Klaus-Dieter Anders, Christian Zwicky