Patents by Inventor Rena Takahashi

Rena Takahashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240129215
    Abstract: A delay measurement device includes a NW measurement unit that measures a topology, a delay amount of each link, jitter, and a packet loss rate, and causes a NW state holding unit to hold them as NW state information, a link quality calculation unit that calculates the link quality between the end points as a weight on the basis of the NW state information including the topology, the delay amount of each link, the jitter, and the packet loss rate, and a path calculation function unit that calculates a measurement path on the basis of a weighted topology in which the weight of the link quality calculated by the link quality calculation unit is reflected in the topology. The NW measurement unit transmits a measurement packet to a start point and measures the delay amount of a measurement target section of a NW.
    Type: Application
    Filed: February 18, 2021
    Publication date: April 18, 2024
    Inventors: Kazuma KAMIENOO, Ken TAKAHASHI, Hiroki MORI, Rena OMACHI
  • Patent number: 11923166
    Abstract: In a cylindrical guard electrode (5) provided on the outer peripheral side of an electron generation part (31) of an emitter (3), a distal end section (5A) 5 positioned in the emission direction of an electron beam (L1) from the electron generation part (31) includes: a distal end inner-peripheral-side part (A1) having an inner-peripheral-side curved surface portion (a1) convex in the emission direction; a distal end outer-peripheral-side part (A2) having an outer-peripheral-side curved portion (a2) convex in the emission direction; and a 10 distal end middle part (A3) positioned between the distal end inner-peripheral-side (A1) and the distal end outer-peripheral-side part (A2). The distal end middle part (A3) has a flat surface portion (a3) between the inner-peripheral-surface portion (a1) and the outer-peripheral-side curved surface portion (a2) so as to extend in the direction therebetween.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: March 5, 2024
    Assignee: MEIDENSHA CORPORATION
    Inventors: Takumi Hayashi, Rena Takahashi, Hayato Ochi
  • Patent number: 11776785
    Abstract: A vacuum container is configured so that an opening on one side and an opening on another side in the longitudinal direction of a cylindrical insulating body are sealed with an emitter unit and a target unit respectively; and a vacuum chamber is provided on the inner peripheral side of the insulating body. The emitter unit is provided with: a moving body located on the one side in the longitudinal direction in the vacuum chamber and supported so as to be movable in the longitudinal direction via a bellows; and a guard electrode located on the outer peripheral side of the moving body. An emitter section having an electron generating section is formed at a tip section of the moving body on the other side in the longitudinal direction by subjecting the surface of the tip section to film formation processing.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: October 3, 2023
    Assignee: MEIDENSHA CORPORATION
    Inventors: Hayato Ochi, Rena Takahashi
  • Publication number: 20230298844
    Abstract: In a cylindrical guard electrode (5) provided on the outer peripheral side of an electron generation part (31) of an emitter (3), a distal end section (5A) 5 positioned in the emission direction of an electron beam (L1) from the electron generation part (31) includes: a distal end inner-peripheral-side part (A1) having an inner-peripheral-side curved surface portion (a1) convex in the emission direction; a distal end outer-peripheral-side part (A2) having an outer-peripheral-side curved portion (a2) convex in the emission direction; and a 10 distal end middle part (A3) positioned between the distal end inner-peripheral-side (A1) and the distal end outer-peripheral-side part (A2). The distal end middle part (A3) has a flat surface portion (a3) between the inner-peripheral-surface portion (a1) and the outer-peripheral-side curved surface portion (a2) so as to extend in the direction therebetween.
    Type: Application
    Filed: August 2, 2021
    Publication date: September 21, 2023
    Applicant: MEIDENSHA CORPORATION
    Inventors: Takumi HAYASHI, Rena TAKAHASHI, Hayato OCHI
  • Publication number: 20230197394
    Abstract: A vacuum container is configured so that an opening on one side and an opening on another side in the longitudinal direction of a cylindrical insulating body are sealed with an emitter unit and a target unit respectively; and a vacuum chamber is provided on the inner peripheral side of the insulating body. The emitter unit is provided with: a moving body located on the one side in the longitudinal direction in the vacuum chamber and supported so as to be movable in the longitudinal direction via a bellows; and a guard electrode located on the outer peripheral side of the moving body. An emitter section having an electron generating section is formed at a tip section of the moving body on the other side in the longitudinal direction by subjecting the surface of the tip section to film formation processing.
    Type: Application
    Filed: May 26, 2021
    Publication date: June 22, 2023
    Applicant: MEIDENSHA CORPORATION
    Inventors: Hayato OCHI, Rena TAKAHASHI
  • Publication number: 20230197395
    Abstract: opening edge surface (45a) of an emitter supporting unit female screw bore (45) provided at an emitter supporting unit (4) extends along radial direction of the emitter supporting unit female screw bore (45). An emitter supporting unit operation hole (32) provided at a flange portion (30a) of a vacuum enclosure (11) has shape into which one selected from a position adjustment shaft (6) and a pressing shaft (9) can be inserted from their shaft tip sides. The position adjustment shaft is provided, on an outer circumferential surface of its tip (61), with a tip side male screw portion (61a) that can be screwed into the emitter supporting unit female screw bore (45). The pressing shaft has, at its tip (91), a tip surface (91a) having a larger diameter than an opening diameter of the emitter supporting unit female screw bore (45) and extending along radial direction of the pressing shaft.
    Type: Application
    Filed: May 26, 2021
    Publication date: June 22, 2023
    Applicant: MEIDENSHA CORPORATION
    Inventors: Takumi HAYASHI, Rena TAKAHASHI, Hayato OCHI
  • Patent number: 11615937
    Abstract: An emitter support structure for a field emission device, the emitter support structure includes: a support portion disposed to be moved in a direction of both ends of a vacuum chamber of the field emission device, and configured to support an emitter of the field emission device; a protruding portion formed at one end portion of the support portion which confronts a target of the field emission device, and to which the emitter is inserted and mounted; a slit formed in a circumference wall portion of the protruding portion in a height direction of the circumference wall portion; and a redundant brazing material groove formed in an outside of the protruding portion along the circumference wall portion.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: March 28, 2023
    Assignee: MEIDENSHA CORPORATION
    Inventors: Hayato Ochi, Rena Takahashi
  • Patent number: 11527378
    Abstract: It is a CNT device (1) (carbon-metal structure) equipped with a carbon nanotube layer (2) (CNT layer 2; same hereafter) on a metal pedestal (4). The metal pedestal (4) is brazed to the CNT layer (2) with a brazing material layer (3) interposed therebetween. When manufacturing the CNT device (1), firstly, the CNT layer (2) is formed on a heat-resistant textured substrate (6). Next, the metal pedestal (4) is brazed to the CNT layer (2) that is on the heat-resistant textured substrate (6) with the brazing material layer (3) interposed therebetween. Then, the metal pedestal (4) (and the CNT layer 2) is peeled off the heat-resistant textured substrate (6) to transfer the CNT layer (2) from the heat-resistant textured substrate (6) to the metal pedestal (4).
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: December 13, 2022
    Assignees: WASEDA UNIVERSITY, MEIDENSHA CORPORATION
    Inventors: Suguru Noda, Sae Kitagawa, Kotaro Yasui, Hisashi Sugime, Daizo Takahashi, Yuichi Nishikiori, Hayato Ochi, Rena Takahashi, Toshimasa Fukai
  • Publication number: 20220351930
    Abstract: An emitter support structure for a field emission device, the emitter support structure includes: a support portion disposed to be moved in a direction of both ends of a vacuum chamber of the field emission device, and configured to support an emitter of the field emission device; a protruding portion formed at one end portion of the support portion which confronts a target of the field emission device, and to which the emitter is inserted and mounted; a slit formed in a circumference wall portion of the protruding portion in a height direction of the circumference wall portion; and a redundant brazing material groove formed in an outside of the protruding portion along the circumference wall portion.
    Type: Application
    Filed: May 12, 2020
    Publication date: November 3, 2022
    Applicant: MEIDENSHA CORPORATION
    Inventors: Hayato OCHI, Rena TAKAHASHI
  • Publication number: 20210375572
    Abstract: It is a CNT device (1) (carbon-metal structure) equipped with a carbon nanotube layer (2) (CNT layer 2; same hereafter) on a metal pedestal (4). The metal pedestal (4) is brazed to the CNT layer (2) with a brazing material layer (3) interposed therebetween. When manufacturing the CNT device (1), firstly, the CNT layer (2) is formed on a heat-resistant textured substrate (6). Next, the metal pedestal (4) is brazed to the CNT layer (2) that is on the heat-resistant textured substrate (6) with the brazing material layer (3) interposed therebetween. Then, the metal pedestal (4) (and the CNT layer 2) is peeled off the heat-resistant textured substrate (6) to transfer the CNT layer (2) from the heat-resistant textured substrate (6) to the metal pedestal (4).
    Type: Application
    Filed: October 21, 2019
    Publication date: December 2, 2021
    Applicants: WASEDA UNIVERSITY, MEIDENSHA CORPORATION
    Inventors: Suguru NODA, Sae KITAGAWA, Kotaro YASUI, Hisashi SUGIME, Daizo TAKAHASHI, Yuichi NISHIKIORI, Hayato OCHI, Rena TAKAHASHI, Toshimasa FUKAI
  • Patent number: 9444051
    Abstract: The present invention relates to a donor substrate and a method of manufacturing a light-emitting device. The donor substrate includes a reflective layer including an opening portion, a light absorption layer covering the opening portion of the reflective layer over the reflective layer, a heat insulating layer including an opening portion in a position overlapped with the opening portion of the reflective layer over the light absorption layer, and a material layer including a light-emitting material covering the opening portion of the heat insulating layer over the heat insulating layer. A target substrate and the donor substrate are disposed to face each other, and an EL layer is formed over the target substrate by performing light irradiation from a rear surface of the donor substrate.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: September 13, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomoya Aoyama, Yosuke Sato, Kohei Yokoyama, Rena Takahashi
  • Patent number: 9159923
    Abstract: An evaporation donor substrate that makes it possible to evaporate only a desired evaporation material in the case of performing deposition by an evaporation method. Thus, the use efficiency of an evaporation material can be increased resulting in reduction in production cost, and further a film with high uniformity can be deposited. The evaporation donor substrate can be obtained by forming a reflective layer having an opening over a substrate, forming a thermal insulation layer having a light-transmitting property separately over the substrate and the reflective layer, forming a light absorption layer over the thermal insulation layer, and forming a material layer over the light absorption layer.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: October 13, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kohei Yokoyama, Yosuke Sato, Tomoya Aoyama, Rena Takahashi
  • Patent number: 8425974
    Abstract: A first supporting substrate on a front surface of which a reflective layer having an opening is formed and a second supporting substrate on a front surface of which a light absorption layer patterned into island or stripe shapes and a material layer over the light absorption layer are formed are prepared, the first and second supporting substrates are disposed so that the opening of the reflective layer and the light absorption layer overlap with each other and the reflective layer is in contact with a back surface of the second supporting substrate, the second supporting substrate and a deposition target substrate are disposed so that the front surface of the second supporting substrate faces the deposition target substrate, and the material layer is attached to the deposition target substrate by irradiating the back surface of the first supporting substrate with light and by sublimating the material layer.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: April 23, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Rena Takahashi, Yosuke Sato, Kohei Yokoyama, Tomoya Aoyama
  • Publication number: 20120251772
    Abstract: The present invention relates to a donor substrate and a method of manufacturing a light-emitting device. The donor substrate includes a reflective layer including an opening portion, a light absorption layer covering the opening portion of the reflective layer over the reflective layer, a heat insulating layer including an opening portion in a position overlapped with the opening portion of the reflective layer over the light absorption layer, and a material layer including a light-emitting material covering the opening portion of the heat insulating layer over the heat insulating layer. A target substrate and the donor substrate are disposed to face each other, and an EL layer is formed over the target substrate by performing light irradiation from a rear surface of the donor substrate.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 4, 2012
    Inventors: Tomoya Aoyama, Yosuke Sato, Kohei Yokoyama, Rena Takahashi
  • Patent number: 8277871
    Abstract: To provide an evaporation donor substrate which is used for deposition by an evaporation method and which allows reduction in manufacturing cost and high uniformity of a film which is deposited. In addition, to provide a method for manufacturing a light-emitting device using the evaporation donor substrate. The evaporation donor substrate includes a reflective layer having an opening which is formed over a substrate, a heat insulating layer having a light-transmitting property which is formed over the substrate and the reflective layer, a light absorption layer which is formed over the heat insulating layer; and a material layer which is formed over the light absorption layer.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: October 2, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomoya Aoyama, Yosuke Sato, Kohei Yokoyama, Rena Takahashi
  • Patent number: 8153201
    Abstract: The present invention provides a method of manufacturing a light-emitting device and an evaporation donor substrate, by which the precision of patterning of an EL layer of each color can be improved in manufacture of a full color flat panel display using emission colors of red, green, and blue. A first substrate which includes a reflective layer including an opening portion, a heat insulating layer including an opening portion in a position overlapped with the opening portion of the reflective layer over the reflective layer, a light absorption layer covering the opening portion of the reflective layer and the opening portion of the heat insulating layer over the heat insulating layer, and a material layer over the light absorption layer is used. While one surface of the first substrate is disposed close to a deposition target surface of a second substrate, the first substrate is irradiated with light from the other surface of the first substrate.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: April 10, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomoya Aoyama, Yosuke Sato, Kohei Yokoyama, Rena Takahashi
  • Publication number: 20090169809
    Abstract: An evaporation donor substrate that makes it possible to evaporate only a desired evaporation material in the case of performing deposition by an evaporation method. Thus, the use efficiency of an evaporation material can be increased resulting in reduction in production cost, and further a film with high uniformity can be deposited. The evaporation donor substrate can be obtained by forming a reflective layer having an opening over a substrate, forming a thermal insulation layer having a light-transmitting property separately over the substrate and the reflective layer, forming a light absorption layer over the thermal insulation layer, and forming a material layer over the light absorption layer.
    Type: Application
    Filed: December 18, 2008
    Publication date: July 2, 2009
    Inventors: Kohei Yokoyama, Yosuke Sato, Tomoya Aoyama, Rena Takahashi
  • Publication number: 20090142510
    Abstract: A first supporting substrate on a front surface of which a reflective layer having an opening is formed and a second supporting substrate on a front surface of which a light absorption layer patterned into island or stripe shapes and a material layer over the light absorption layer are formed are prepared, the first and second supporting substrates are disposed so that the opening of the reflective layer and the light absorption layer overlap with each other and the reflective layer is in contact with a back surface of the second supporting substrate, the second supporting substrate and a deposition target substrate are disposed so that the front surface of the second supporting substrate faces the deposition target substrate, and the material layer is attached to the deposition target substrate by irradiating the back surface of the first supporting substrate with light and by sublimating the material layer.
    Type: Application
    Filed: November 17, 2008
    Publication date: June 4, 2009
    Inventors: Rena Takahashi, Yosuke Sato, Kohei Yokohama, Tomoya Aoyama
  • Publication number: 20090104403
    Abstract: To provide an evaporation donor substrate which is used for deposition by an evaporation method and which allows reduction in manufacturing cost and high uniformity of a film which is deposited. In addition, to provide a method for manufacturing a light-emitting device using the evaporation donor substrate. The evaporation donor substrate includes a reflective layer having an opening which is formed over a substrate, a heat insulating layer having a light-transmitting property which is formed over the substrate and the reflective layer, a light absorption layer which is formed over the heat insulating layer; and a material layer which is formed over the light absorption layer.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 23, 2009
    Inventors: Tomoya AOYAMA, Yosuke SATO, Kohei YOKOYAMA, Rena TAKAHASHI
  • Publication number: 20090104835
    Abstract: The present invention provides a method of manufacturing a light-emitting device and an evaporation donor substrate, by which the precision of patterning of an EL layer of each color can be improved in manufacture of a full color flat panel display using emission colors of red, green, and blue. A first substrate which includes a reflective layer including an opening portion, a heat insulating layer including an opening portion in a position overlapped with the opening portion of the reflective layer over the reflective layer, a light absorption layer covering the opening portion of the reflective layer and the opening portion of the heat insulating layer over the heat insulating layer, and a material layer over the light absorption layer is used. While one surface of the first substrate is disposed close to a deposition target surface of a second substrate, the first substrate is irradiated with light from the other surface of the first substrate.
    Type: Application
    Filed: October 21, 2008
    Publication date: April 23, 2009
    Inventors: Tomoya Aoyama, Yosuke Sato, Kohei Yokoyama, Rena Takahashi