Patents by Inventor Renata Camillo-Castillo

Renata Camillo-Castillo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140213036
    Abstract: A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.
    Type: Application
    Filed: March 31, 2014
    Publication date: July 31, 2014
    Applicant: International Business Machines Corporation
    Inventors: Alan B. Botula, Renata Camillo-Castillo, James S. Dunn, Jeffrey P. Gambino, Douglas B. Hershberger, Alvin J. Joseph, Robert M. Rassel, Mark E. Stidham
  • Publication number: 20140151750
    Abstract: Structures and methods of making a heterojunction bipolar transistor (HBT) device that include: an n-type collector region disposed within a crystalline silicon layer; a p-type intrinsic base comprising a boron-doped silicon germanium crystal that is disposed on a top surface of an underlying crystalline Si layer, which is bounded by shallow trench isolators (STIs), and that forms angled facets on interfaces of the underlying crystalline Si layer with the shallow trench isolators (STIs); a Ge-rich, crystalline silicon germanium layer that is disposed on the angled facets and not on a top surface of the p-type intrinsic base; and an n-type crystalline emitter disposed on a top surface and not on the angled lateral facets of the p-type intrinsic base.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata A. Camillo-Castillo, Jeffrey B. Johnson
  • Patent number: 8735986
    Abstract: A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Renata Camillo-Castillo, James S. Dunn, Jeffrey P. Gambino, Douglas B. Hershberger, Alvin J. Joseph, Robert M. Rassel, Mark E. Stidham
  • Patent number: 8716837
    Abstract: Methods for fabricating bipolar junction transistors, bipolar junction transistors made by the methods, and design structures for a bipolar junction transistor. The bipolar junction transistor includes a dielectric layer on an intrinsic base and an extrinsic base at least partially separated from the intrinsic base by the dielectric layer. An emitter opening extends through the extrinsic base and the dielectric layer. The dielectric layer is recessed laterally relative to the emitter opening to define a cavity between the intrinsic base and the extrinsic base. The cavity is filled with a semiconductor layer that physically links the extrinsic base and the intrinsic base together.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: May 6, 2014
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Peter B. Gray, David L. Harame, Alvin J. Joseph, Marwan H. Khater, Qizhi Liu
  • Publication number: 20140061727
    Abstract: A method of forming an integrated circuit structure includes: forming a vent via extending through a shallow trench isolation (STI) and into a substrate; selectively removing an exposed portion of the substrate at a bottom of the vent via to form an opening within the substrate, wherein the opening within the substrate abuts at least one of a bottom surface or a sidewall of the STI; and sealing the vent via to form an air gap in the opening within the substrate.
    Type: Application
    Filed: November 6, 2013
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventors: Renata A. Camillo-Castillo, James S. Dunn, David L. Harame, Anthony K. Stamper
  • Publication number: 20140030861
    Abstract: A lateral diffused metal-oxide-semiconductor field effect transistor (LDMOS transistor) employs a stress layer that enhances carrier mobility (i.e., on-current) while also maintaining a high breakdown voltage for the device. High breakdown voltage is maintained, because an increase in doping concentration of the drift region is minimized A well region and a drift region are formed in the substrate adjacent to one another. A first shallow trench isolation (STI) region is formed on and adjacent to the well region, and a second STI region is formed on and adjacent to the drift region. A stress layer is deposited over the LDMOS transistor and in the second STI region, which propagates compressive or tensile stress into the drift region, depending on the polarity of the stress layer. A portion of the stress layer can be removed over the gate to change the polarity of stress in the inversion region below the gate.
    Type: Application
    Filed: October 2, 2013
    Publication date: January 30, 2014
    Applicant: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Robert J. Gauthier, JR., Ephrem G. Gebreselasie, Richard A. Phelps, Jed H. Rankin, Yun Shi
  • Patent number: 8603889
    Abstract: A method of forming an integrated circuit structure includes: forming a vent via extending through a shallow trench isolation (STI) and into a substrate; selectively removing an exposed portion of the substrate at a bottom of the vent via to form an opening within the substrate, wherein the opening within the substrate abuts at least one of a bottom surface or a sidewall of the STI; and sealing the vent via to form an air gap in the opening within the substrate.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Renata A. Camillo-Castillo, James S. Dunn, David L. Harame, Anthony K. Stamper
  • Patent number: 8598660
    Abstract: A lateral diffused metal-oxide-semiconductor field effect transistor (LDMOS transistor) employs a stress layer that enhances carrier mobility (i.e., on-current) while also maintaining a high breakdown voltage for the device. High breakdown voltage is maintained, because an increase in doping concentration of the drift region is minimized. A well region and a drift region are formed in the substrate adjacent to one another. A first shallow trench isolation (STI) region is formed on and adjacent to the well region, and a second STI region is formed on and adjacent to the drift region. A stress layer is deposited over the LDMOS transistor and in the second STI region, which propagates compressive or tensile stress into the drift region, depending on the polarity of the stress layer. A portion of the stress layer can be removed over the gate to change the polarity of stress in the inversion region below the gate.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: December 3, 2013
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Erik Mattias Dahlstrom, Robert J. Gauthier, Jr., Ephrem G. Gebreselasie, Richard A. Phelps, Jed Hickory Rankin, Yun Shi
  • Publication number: 20130313607
    Abstract: Device structures, fabrication methods, operating methods, and design structures for a silicon controlled rectifier. The method includes applying a mechanical stress to a region of a silicon controlled rectifier (SCR) at a level sufficient to modulate a trigger current of the SCR. The device and design structures include a SCR with an anode, a cathode, a first region, and a second region of opposite conductivity type to the first region. The first and second regions of the SCR are disposed in a current-carrying path between the anode and cathode of the SCR. A layer is positioned on a top surface of a semiconductor substrate relative to the first region and configured to cause a mechanical stress in the first region of the SCR at a level sufficient to modulate a trigger current of the SCR.
    Type: Application
    Filed: August 1, 2013
    Publication date: November 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Robert J. Gauthier, JR., Ephrem G. Gebreselasie, Richard A. Phelps, Yun Shi, Andreas D. Stricker
  • Patent number: 8586423
    Abstract: Device structures, fabrication methods, operating methods, and design structures for a silicon controlled rectifier. The method includes applying a mechanical stress to a region of a silicon controlled rectifier (SCR) at a level sufficient to modulate a trigger current of the SCR. The device and design structures include a SCR with an anode, a cathode, a first region, and a second region of opposite conductivity type to the first region. The first and second regions of the SCR are disposed in a current-carrying path between the anode and cathode of the SCR. A layer is positioned on a top surface of a semiconductor substrate relative to the first region and configured to cause a mechanical stress in the first region of the SCR at a level sufficient to modulate a trigger current of the SCR.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Robert J. Gauthier, Jr., Ephrem G. Gebreselasie, Richard A. Phelps, Yun Shi, Andreas Stricker
  • Publication number: 20130256758
    Abstract: A method of forming an integrated circuit structure includes: forming a vent via extending through a shallow trench isolation (STI) and into a substrate; selectively removing an exposed portion of the substrate at a bottom of the vent via to form an opening within the substrate, wherein the opening within the substrate abuts at least one of a bottom surface or a sidewall of the STI; and sealing the vent via to form an air gap in the opening within the substrate.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata A. Camillo-Castillo, James S. Dunn, David L. Harame, Anthony K. Stamper
  • Patent number: 8536012
    Abstract: Methods for fabricating bipolar junction transistors, bipolar junction transistors made by the methods, and design structures for a bipolar junction transistor. The bipolar junction transistor includes a dielectric layer on an intrinsic base and an extrinsic base at least partially separated from the intrinsic base by the dielectric layer. An emitter opening extends through the extrinsic base and the dielectric layer. The dielectric layer is recessed laterally relative to the emitter opening to define a cavity between the intrinsic base and the extrinsic base. The cavity is filled with a semiconductor layer that physically links the extrinsic base and the intrinsic base together.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: September 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Peter B. Gray, David L. Harame, Alvin J. Joseph, Marwan H. Khater, Qizhi Liu
  • Publication number: 20130187198
    Abstract: A heterojunction bipolar transistor (HBT) structure, method of manufacturing the same and design structure thereof are provided. The HBT structure includes a semiconductor substrate having a sub-collector region therein. The HBT structure further includes a collector region overlying a portion of the sub-collector region. The HBT structure further includes an intrinsic base layer overlying at least a portion of the collector region. The HBT structure further includes an extrinsic base layer adjacent to and electrically connected to the intrinsic base layer. The HBT structure further includes an isolation region extending vertically between the extrinsic base layer and the sub-collector region. The HBT structure further includes an emitter overlying a portion of the intrinsic base layer. The HBT structure further includes a collector contact electrically connected to the sub-collector region. The collector contact advantageously extends through at least a portion of the extrinsic base layer.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 25, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata Camillo-Castillo, Zhong-Xiang He, Jeffrey B. Johnson, Qizhi Liu, Xuefeng Liu
  • Publication number: 20130140668
    Abstract: A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 6, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Renata Camillo-Castillo, James S. Dunn, Jeffrey P. Gambino, Douglas B. Hershberger, Alvin J. Joseph, Mark E. Stidham, Robert M. Rassel
  • Publication number: 20130119508
    Abstract: Methods for fabricating bipolar junction transistors, bipolar junction transistors, and design structures for a bipolar junction transistor. The bipolar junction transistor may include a plurality of emitters that are arranged in distinct emitter fingers. A silicide layer is formed that covers an extrinsic base layer of the bipolar junction transistor and that fills the gaps between adjacent emitters. Non-conductive spacers on the emitter sidewalls electrically insulate the emitters from the silicide layer. The emitters extend through the extrinsic base layer and the silicide layer to contact the intrinsic base layer. The emitters may be formed using sacrificial emitter pedestals in a replacement-type process.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 16, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata Camillo-Castillo, David L. Harame, Qizhi Liu, Ramana M. Malladi, John J. Pekarik
  • Publication number: 20130105941
    Abstract: An Integrated Circuit (IC) and a method of making the same. In one embodiment, the IC includes: a substrate; a first set of trenches formed in a first surface of the substrate; a second set of trenches formed in a second surface of the substrate; and at least one through silicon via connecting the first set of trenches and the second set of trenches.
    Type: Application
    Filed: October 26, 2011
    Publication date: May 2, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel S. Vanslette, John J. Ellis-Monaghan, Renata A. Camillo-Castillo, Robert M. Rassel
  • Patent number: 8405186
    Abstract: Disclosed are embodiments of an improved transistor structure (e.g., a bipolar transistor (BT) structure or heterojunction bipolar transistor (HBT) structure) and a method of forming the transistor structure. The structure embodiments can incorporate a dielectric layer sandwiched between an intrinsic base layer and a raised extrinsic base layer to reduce collector-base capacitance Ccb, a sidewall-defined conductive strap for an intrinsic base layer to extrinsic base layer link-up region to reduce base resistance Rb and a dielectric spacer between the extrinsic base layer and an emitter layer to reduce base-emitter Cbe capacitance. The method embodiments allow for self-aligning of the emitter to base regions and further allow the geometries of different features (e.g., the thickness of the dielectric layer, the width of the conductive strap, the width of the dielectric spacer and the width of the emitter layer) to be selectively adjusted in order to optimize transistor performance.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: March 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Mattias E. Dahlstrom, Peter B. Gray, David L. Harame, Russell T. Herrin, Alvin J. Joseph, Andreas D. Stricker
  • Publication number: 20130009280
    Abstract: Methods for fabricating bipolar junction transistors, bipolar junction transistors made by the methods, and design structures for a bipolar junction transistor. The bipolar junction transistor includes a dielectric layer on an intrinsic base and an extrinsic base at least partially separated from the intrinsic base by the dielectric layer. An emitter opening extends through the extrinsic base and the dielectric layer. The dielectric layer is recessed laterally relative to the emitter opening to define a cavity between the intrinsic base and the extrinsic base. The cavity is filled with a semiconductor layer that physically links the extrinsic base and the intrinsic base together.
    Type: Application
    Filed: July 6, 2011
    Publication date: January 10, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata Camillo-Castillo, Peter B. Gray, David L. Harame, Alvin J. Joseph, Marwan H. Khater, Qizhi Liu
  • Publication number: 20120326766
    Abstract: Device structures, fabrication methods, operating methods, and design structures for a silicon controlled rectifier. The method includes applying a mechanical stress to a region of a silicon controlled rectifier (SCR) at a level sufficient to modulate a trigger current of the SCR. The device and design structures include a SCR with an anode, a cathode, a first region, and a second region of opposite conductivity type to the first region. The first and second regions of the SCR are disposed in a current-carrying path between the anode and cathode of the SCR. A layer is positioned on a top surface of a semiconductor substrate relative to the first region and configured to cause a mechanical stress in the first region of the SCR at a level sufficient to modulate a trigger current of the SCR.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Robert J. Gauthier, JR., Ephrem G. Gebreselasie, Richard A. Phelps, Yun Shi, Andreas D. Stricker
  • Patent number: 8338863
    Abstract: Vertical heterojunction bipolar transistors with reduced base-collector junction capacitance, as well as fabrication methods for vertical heterojunction bipolar transistors and design structures for BiCMOS integrated circuits. The vertical heterojunction bipolar transistor includes a barrier layer between the intrinsic base and the extrinsic base that blocks or reduces diffusion of a dopant from the extrinsic base to the intrinsic base. The barrier layer has at least one opening that permits direct contact between the intrinsic base and a portion of the extrinsic base disposed in the opening.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: December 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Qizhi Liu