Patents by Inventor Rene E. LeBlanc

Rene E. LeBlanc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6220202
    Abstract: A method and apparatus for depositing a film on a substrate by plasma-enhanced chemical vapor deposition at temperatures substantially lower than conventional thermal CVD temperatures comprises placing a substrate within a reaction chamber and exciting a first gas upstream of the substrate to generate activated radicals of the first gas. The substrate is rotated within the deposition chamber to create a pumping action which draws the gas mixture of first gas radicals to the substrate surface. A second gas is supplied proximate the substrate to mix with the activated radicals of the first gas and the mixture produces a surface reaction at the substrate to deposit a film. The pumping action draws the gas mixture down to the substrate surface in a laminar flow to reduce recirculation and radical recombination such that a sufficient amount of radicals are available at the substrate surface to take part in the surface reaction.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: April 24, 2001
    Assignee: Tokyo Electron Limited
    Inventors: Robert F. Foster, Joseph T. Hillman, Rene E. LeBlanc
  • Patent number: 5866213
    Abstract: A method for depositing a film on a substrate by plasma-enhanced chemical vapor deposition at temperatures substantially lower than conventional thermal CVD temperatures comprises placing a substrate within a reaction chamber and exciting a first gas upstream of the substrate to generate activated radicals of the first gas. The substrate is rotated within the deposition chamber to create a pumping action which draws the gas mixture of first gas radicals to the substrate surface. A second gas is supplied proximate the substrate to mix with the activated radicals of the first gas and the mixture produces a surface reaction at the substrate to deposit a film. The pumping action draws the gas mixture down to the substrate surface in a laminar flow to reduce recirculation and radical recombination such that a sufficient amount of radicals are available at the substrate surface to take part in the surface reaction.
    Type: Grant
    Filed: July 19, 1997
    Date of Patent: February 2, 1999
    Assignee: Tokyo Electron Limited
    Inventors: Robert F. Foster, Joseph T. Hillman, Rene E. LeBlanc
  • Patent number: 5716870
    Abstract: A method and apparatus for depositing a film on a substrate by plasma-enhanced chemical vapor deposition at temperatures substantially lower than conventional thermal CVD temperatures comprises placing a substrate within a reaction chamber and exciting a first gas upstream of the substrate to generate activated radicals of the first gas. The substrate is rotated within the deposition chamber to create a pumping action which draws the gas mixture of first gas radicals to the substrate surface. A second gas is supplied proximate the substrate to mix with the activated radicals of the first gas and the mixture produces a surface reaction at the substrate to deposit a film. The pumping action draws the gas mixture down to the substrate surface in a laminar flow to reduce recirculation and radical recombination such that a sufficient amount of radicals are available at the substrate surface to take part in the surface reaction.
    Type: Grant
    Filed: October 2, 1996
    Date of Patent: February 10, 1998
    Assignees: Sony Corporation, Materials Research Corporation
    Inventors: Robert F. Foster, Joseph T. Hillman, Rene E. LeBlanc
  • Patent number: 5665640
    Abstract: A method and apparatus for depositing a film on a substrate by plasma-enhanced chemical vapor deposition at temperatures substantially lower than conventional thermal CVD temperatures comprises placing a substrate within a reaction chamber and exciting a first gas upstream of the substrate to generate activated radicals of the first gas. The substrate is rotated within the deposition chamber to create a pumping action which draws the gas mixture of first gas radicals to the substrate surface. A second gas is supplied proximate the substrate to mix with the activated radicals of the first gas and the mixture produces a surface reaction at the substrate to deposit a film. The pumping action draws the gas mixture down to the substrate surface in a laminar flow to reduce recirculation and radical recombination such that a sufficient amount of radicals are available at the substrate surface to take part in the surface reaction.
    Type: Grant
    Filed: June 3, 1994
    Date of Patent: September 9, 1997
    Assignees: Sony Corporation, Materials Research Corp.
    Inventors: Robert F. Foster, Joseph T. Hillman, Rene E. LeBlanc
  • Patent number: 5567243
    Abstract: A method and apparatus for depositing a film on a substrate by plasma-enhanced chemical vapor deposition at temperatures substantially lower than conventional thermal CVD temperatures comprises placing a substrate within a reaction chamber and exciting a first gas upstream of the substrate to generate activated radicals of the first gas. The substrate is rotated within the deposition chamber to create a pumping action which draws the gas mixture of first gas radicals to the substrate surface. A second gas is supplied proximate the substrate to mix with the activated radicals of the first gas and the mixture produces a surface reaction at the substrate to deposit a film. The pumping action draws the gas mixture down to the substrate surface in a laminar flow to reduce recirculation and radical recombination such that a sufficient amount of radicals are available at the substrate surface to take pan in the surface reaction.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: October 22, 1996
    Assignees: Sony Corporation, Materials Research Corporation
    Inventors: Robert F. Foster, Joseph T. Hillman, Rene E. LeBlanc
  • Patent number: 5370739
    Abstract: A semiconductor wafer processing apparatus or module for a cluster tool is provided with a single wafer rotating susceptor that thins the gas boundary layer to facilitate the transfer of material to or from the wafer, in, for example, CVD for blanket or selective deposition of tungsten or titanium nitride, and degassing and annealing processes. Preferably, a downwardly facing showerhead directs a gas mixture from a cooled mixing chamber onto a rapidly rotating wafer, for example at from 500 to 1500 RPM, thinning a boundary layer for gas flowing radially outwardly from a stagnation point at the wafer center. Smoothly shaped interior reactor surfaces include baffles and plasma cleaning electrodes to minimize turbulence. Inert gases from within the rotating susceptor minimize turbulence by filling gaps in structure, prevent contamination of moving parts, conduct heat between the susceptor and the wafer, and vacuum clamp the wafer to the susceptor.
    Type: Grant
    Filed: June 15, 1992
    Date of Patent: December 6, 1994
    Assignee: Materials Research Corporation
    Inventors: Robert F. Foster, Helen E. Rebenne, Rene E. LeBlanc, Carl L. White, Rikhit Arora
  • Patent number: 5356476
    Abstract: A semiconductor wafer processing apparatus is provided with a susceptor for supporting a wafer for CVD of films such as blanket or selective deposition of tungsten or titanium nitride, and degassing and annealing processes. Preferably, a downwardly facing showerhead directs a gas mixture from a cooled mixing chamber onto an upwardly facing wafer on the susceptor. Smooth interior reactor surfaces include baffles and a susceptor lip and wall shaped to minimize turbulence. Inert gases flow to minimize turbulence by filling gaps in susceptor structure, prevent contamination of moving parts, conduct heat between the susceptor and the wafer, and vacuum clamp the wafer to the susceptor. A susceptor lip surrounds the wafer and is removable for cleaning, to accommodate different size wafers, and allows change of lip materials to for different processes, such as, one which will resist deposits during selective CVD, or one which scavenges unspent gases in blanket CVD.
    Type: Grant
    Filed: June 15, 1992
    Date of Patent: October 18, 1994
    Assignee: Materials Research Corporation
    Inventors: Robert F. Foster, Helen E. Rebenne, Rene E. LeBlanc, Carl L. White, Rikhit Arora
  • Patent number: 5273588
    Abstract: A semiconductor wafer processing apparatus, particularly a CVD reactor, is provided with plasma cleaning electrodes integrated into process gas flow shaping structure that smoothly directs the gas past the wafer on a susceptor. The processing apparatus preferably has a showerhead or other inlet to direct a gas mixture onto a wafer and a plurality of baffles to reduce turbulence. Plasma cleaning electrodes are included in the baffles or the showerhead or both, one or more of which preferably have cleaning gas outlet orifices therein, preferably evenly distributed around the axis of the susceptor to provide uniform cleaning gas flow.
    Type: Grant
    Filed: June 15, 1992
    Date of Patent: December 28, 1993
    Assignee: Materials Research Corporation
    Inventors: Robert F. Foster, Helen E. Rebenne, Rene E. LeBlanc, Carl L. White, Rikhit Arora