Patents by Inventor Rene Maehr

Rene Maehr has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210340566
    Abstract: The present disclosure relates to methods of and systems for modifying the transcriptional regulation of stem or progenitor cells to promote their differentiation or reprogramming of somatic cells. Further, the labeling and editing of human genomic loci in live cells with three orthogonal CRISPR/Cas9 components allow multicolor detection of genomic loci with high spatial resolution, which provides an avenue for barcoding elements of the human genome in the living state.
    Type: Application
    Filed: March 12, 2021
    Publication date: November 4, 2021
    Inventors: THORU PEDERSON, SCOT ANDREW WOLFE, HANHUI MA, Metewo Selase Kosi Enuameh, Nicola Anne Kearns, Ryan Michael Jude Genga, Rene Maehr, Shaojie Zhang, Ardalan Naseri, Manuel Garber
  • Publication number: 20150240213
    Abstract: Certain embodiments disclosed herein are directed to a method of producing endoderm cells, such as definitive endoderm cells by exposing stem cells such as embryonic stem cells or induced pluripotent stem (iPS) cells to an effective amount of at least one compound described herein to differentiate the stem cells into the endoderm cells such as definitive endoderm cells. Differentiated endoderm cells produced by the methods disclosed herein can be differentiated into pancreatic epithelium, and other endoderm derivatives such as thymus, liver, stomach, intestine and lung. Another aspect of the present invention relates to a method of producing pancreatic progenitor cells, such as Pdx1-positive pancreatic progenitor cells by exposing endoderm cells, such as definitive endoderm cells to an effective amount of at least one compound described herein to differentiate the definitive endoderm cells into Pdx1-positive pancreatic progenitor cells.
    Type: Application
    Filed: January 6, 2015
    Publication date: August 27, 2015
    Inventors: Douglas A. Melton, Malgorzata Borowiak, Rene Maehr, Shuibing C. Chen, Weiping Tang, Julia L. Fox, Stuart L. Schreiber
  • Publication number: 20150191744
    Abstract: The present disclosure relates to methods of and systems for modifying the transcriptional regulation of stem or progenitor cells to promote their differentiation or reprogramming of somatic cells. Further, the labeling and editing of human genomic loci in live cells with three orthogonal CRISPR/Cas9 components allow multicolor detection of genomic loci with high spatial resolution, which provides an avenue for barcoding elements of the human genome in the living state.
    Type: Application
    Filed: December 16, 2014
    Publication date: July 9, 2015
    Inventors: Scot Andrew Wolfe, Hanhui Ma, Thoru Pederson, Metewo Selase Kosi Enuameh, Nicola Anne Kearns, Ryan Michael Jude Genga, Rene Maehr, Shaojie Zhang, Ardalan Naseri, Manuel Garber
  • Patent number: 8927280
    Abstract: Certain embodiments disclosed herein are directed to a method of producing endoderm cells, such as definitive endoderm cells by exposing stem cells such as embryonic stem cells or induced pluripotent stem (iPS) cells to an effective amount of at least one compound described herein to differentiate the stem cells into the endoderm cells such as definitive endoderm cells. Differentiated endoderm cells produced by the methods disclosed herein can be differentiated into pancreatic epithelium, and other endoderm derivatives such as thymus, liver, stomach, intestine and lung. Another aspect of the present invention relates to a method of producing pancreatic progenitor cells, such as Pdx1-positive pancreatic progenitor cells by exposing endoderm cells, such as definitive endoderm cells to an effective amount of at least one compound described herein to differentiate the definitive endoderm cells into Pdx1-positive pancreatic progenitor cells.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: January 6, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Douglas A. Melton, Malgorzata Borowiak, Rene Maehr, Shuibing C. Chen, Weiping Tang, Julia L. Fox, Stuart L. Schreiber
  • Publication number: 20140024114
    Abstract: Certain embodiments disclosed herein are directed to a method of producing endoderm cells, such as definitive endoderm cells by exposing stem cells such as embryonic stem cells or induced pluripotent stem (iPS) cells to an effective amount of at least one compound described herein to differentiate the stem cells into the endoderm cells such as definitive endoderm cells. Differentiated endoderm cells produced by the methods disclosed herein can be differentiated into pancreatic epithelium, and other endoderm derivatives such as thymus, liver, stomach, intestine and lung. Another aspect of the present invention relates to a method of producing pancreatic progenitor cells, such as Pdx1-positive pancreatic progenitor cells by exposing endoderm cells, such as definitive endoderm cells to an effective amount of at least one compound described herein to differentiate the definitive endoderm cells into Pdx1-positive pancreatic progenitor cells.
    Type: Application
    Filed: August 12, 2013
    Publication date: January 23, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Douglas A. Melton, Malgorzata Borowiak, Rene Maehr, Shuibing C. Chen, Weiping Tang, Julia L. Fox, Stuart L. Schreiber
  • Patent number: 8507274
    Abstract: Certain embodiments disclosed herein are directed to a method of producing endoderm cells, such as definitive endoderm cells by exposing stem cells such as embryonic stem cells or induced pluripotent stem (iPS) cells to an effective amount of at least one compound described herein to differentiate the stem cells into the endoderm cells such as definitive endoderm cells. Differentated endoderm cells produced by the methods disclosed herein can be differentiated into pancreatic epithelium, and other endoderm derivatives such as thymus, liver, stomach, intestine and lung. Another aspect of the present invention relates to a method of producing pancreatic progenitor cells, such as Pdx1-positive pancreatic progenitor cells by exposing endoderm cells, such as definitive endoderm cells to an effective amount of at least one compound described herein to differentiate the definitive endoderm cells into Pdx1-positive pancreatic progenitor cells.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: August 13, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Douglas A. Melton, Malgorzata Borowiak, Rene Maehr, Shuibing Chen, Weiping Tang, Julia L. Fox, Stuart L. Schreiber
  • Publication number: 20120088300
    Abstract: Certain embodiments disclosed herein are directed to a method of producing endoderm cells, such as definitive endoderm cells by exposing stem cells such as embryonic stem cells or induced pluripotent stem (iPS) cells to an effective amount of at least one compound described herein to differentiate the stem cells into the endoderm cells such as definitive endoderm cells. Differentated endoderm cells produced by the methods disclosed herein can be differentiated into pancreatic epithelium, and other endoderm derivatives such as thymus, liver, stomach, intestine and lung. Another aspect of the present invention relates to a method of producing pancreatic progenitor cells, such as Pdx1-positive pancreatic progenitor cells by exposing endoderm cells, such as definitive endoderm cells to an effective amount of at least one compound described herein to differentiate the definitive endoderm cells into Pdx1-positive pancreatic progenitor cells.
    Type: Application
    Filed: February 5, 2010
    Publication date: April 12, 2012
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Douglas A. Melton, Malgorzata Borowiak, Rene Maehr, Shuibing Chen, Weiping Tang, Julia L. Fox, Stuart L. Schreiber
  • Publication number: 20110014164
    Abstract: The disclosure features a method of producing an induced pluripotent stem cell a somatic cell. The method includes contacting a somatic cell with a DNA methyl transferase inhibitor or a histone deacetylase (HDAC) inhibitor, or a combination thereof, to produce a pluripotent stem cell.
    Type: Application
    Filed: February 13, 2009
    Publication date: January 20, 2011
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Danwei Huangfu, Douglas A. Melton, Rene Maehr