Patents by Inventor Rengarajan Sudharsanan

Rengarajan Sudharsanan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10790407
    Abstract: A method and apparatus for fabricating sensor chip assemblies. A photodetector wafer and an optics wafer are bonded to each other. Photodetectors are formed on the photodetector wafer. A circuit wafer is bonded to the photodetector wafer that is bonded to the optics wafer after forming the photodetectors on the photodetector wafer.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: September 29, 2020
    Assignee: The Boeing Company
    Inventors: Xiaogang Bai, Rengarajan Sudharsanan
  • Patent number: 10436904
    Abstract: A laser distance and ranging (LADAR) array is provided. The LADAR array includes a plurality of LADAR modules, each LADAR module configured to scan a laser beam through a field of view (FOV) and output a signal indicative of a distance between each LADAR module and objects in the FOV that the laser beam is incident upon, and a central processing device communicatively coupled to the plurality of LADAR modules, the central processing device configured to generate an output based at least in part on the signals of each LADAR module.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: October 8, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Robert Douglas Moss, Scott B. Singer, Alexander C. Standridge, Ping Yuan, Rengarajan Sudharsanan
  • Patent number: 10128397
    Abstract: A system, method, and apparatus for an avalanche photodiode with an enhanced multiplier layer are disclosed herein. In particular, the present disclosure teaches an avalanche photodiode having a multiplier with alternating layers of one or more quantum wells and one or more spacers. A method of making the avalanche photodiode includes growing the multiplier on a substrate.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: November 13, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Xiaogang Bai, Ping Yuan, Rengarajan Sudharsanan
  • Patent number: 9570647
    Abstract: An avalanche photodiode detector is provided. The avalanche photodiode detector comprises an absorber region having an absorption layer for receiving incident photons and generating charged carriers; and a multiplier region having a multiplication layer; wherein the multiplier region is on a mesa structure separate from the absorber region and is coupled to the absorber region by a bridge for transferring charged carriers between the absorber region and multiplier region.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: February 14, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Ping Yuan, Joseph C. Boisvert, Dmitri D. Krut, Rengarajan Sudharsanan
  • Publication number: 20160306043
    Abstract: A laser distance and ranging (LADAR) array is provided. The LADAR array includes a plurality of LADAR modules, each LADAR module configured to scan a laser beam through a field of view (FOV) and output a signal indicative of a distance between each LADAR module and objects in the FOV that the laser beam is incident upon, and a central processing device communicatively coupled to the plurality of LADAR modules, the central processing device configured to generate an output based at least in part on the signals of each LADAR module.
    Type: Application
    Filed: April 15, 2015
    Publication date: October 20, 2016
    Inventors: Robert Douglas Moss, Scott B. Singer, Alexander C. Standridge, Ping Yuan, Rengarajan Sudharsanan
  • Publication number: 20160043268
    Abstract: A method and apparatus for fabricating sensor chip assemblies. A photodetector wafer and an optics wafer are bonded to each other. Photodetectors are formed on the photodetector wafer. A circuit wafer is bonded to the photodetector wafer that is bonded to the optics wafer after forming the photodetectors on the photodetector wafer.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 11, 2016
    Inventors: Xiaogang Bai, Rengarajan Sudharsanan
  • Publication number: 20150179862
    Abstract: An avalanche photodiode detector is provided. The avalanche photodiode detector comprises an absorber region having an absorption layer for receiving incident photons and generating charged carriers; and a multiplier region having a multiplication layer; wherein the multiplier region is on a mesa structure separate from the absorber region and is coupled to the absorber region by a bridge for transferring charged carriers between the absorber region and multiplier region.
    Type: Application
    Filed: March 9, 2015
    Publication date: June 25, 2015
    Inventors: Ping Yuan, Joseph C. Boisvert, Dmitri D. Krut, Rengarajan Sudharsanan
  • Patent number: 9035410
    Abstract: An avalanche photodiode detector is provided. The avalanche photodiode detector comprises an absorber region having an absorption layer for receiving incident photons and generating charged carriers; and a multiplier region having a multiplication layer; wherein the multiplier region is on a mesa structure separate from the absorber region and is coupled to the absorber region by a bridge for transferring charged carriers between the absorber region and multiplier region.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 19, 2015
    Assignee: THE BOEING COMPANY
    Inventors: Ping Yuan, Joseph C. Boisvert, Dmitri D. Krut, Rengarajan Sudharsanan
  • Patent number: 8816461
    Abstract: A dichromatic photodiode and method for dichromatic photodetection are disclosed. A wide bandgap junction comprises a lattice matched junction operable to detect a first light spectrum. A narrow bandgap junction is coupled to the wide bandgap junction, and comprises a photodiode structure. The narrow bandgap junction is operable to detect a second light spectrum.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: August 26, 2014
    Assignee: The Boeing Company
    Inventors: Ping Yuan, Xiaogang Bai, Rengarajan Sudharsanan
  • Publication number: 20130062663
    Abstract: A dichromatic photodiode and method for dichromatic photodetection are disclosed. A wide bandgap junction comprises a lattice matched junction operable to detect a first light spectrum. A narrow bandgap junction is coupled to the wide bandgap junction, and comprises a photodiode structure. The narrow bandgap junction is operable to detect a second light spectrum.
    Type: Application
    Filed: September 13, 2011
    Publication date: March 14, 2013
    Inventors: Ping Yuan, Xiaogang Bai, Rengarajan Sudharsanan
  • Patent number: 7598582
    Abstract: A photodetector and a method for fabricating a photodetector. The photodetector may include a substrate, a buffer layer formed on the substrate, and an absorption layer formed on the buffer layer for receiving incident photons and generating charged carriers. An N-doped interface layer may be formed on the absorption layer, an N-doped cap layer may be formed on the N-doped interface layer, and a dielectric passivation layer may be formed above the cap layer. A P+ diffusion region may be formed within the cap layer, the N-doped interface layer and at least a portion of the absorption layer, and at least one contact may be formed on and coupled to the P+ diffusion region.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: October 6, 2009
    Assignee: The Boeing Company
    Inventors: Joseph Charles Boisvert, Takahiro D. Isshiki, Rengarajan Sudharsanan
  • Patent number: 7592651
    Abstract: A photodiode and method of forming a photodiode has a substrate. An absorption layer is formed on the substrate to absorb lightwaves of a desired frequency range. A multiplication structure is formed on the absorption layer. The multiplication layer uses a low dark current avalanching material. The absorption layer and the multiplication layer are formed into at least one mesa having in an inverted “T” configuration to reduce junction area between the absorption layer and the multiplication layer. A dielectric layer is formed over the at least one mesa. At least one contact is formed on the dielectric layer and coupled to the at least one mesa.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: September 22, 2009
    Assignee: The Boeing Company
    Inventors: Joseph C. Boisvert, Rengarajan Sudharsanan
  • Publication number: 20090008738
    Abstract: An avalanche photodiode detector is provided. The avalanche photodiode detector comprises an absorber region having an absorption layer for receiving incident photons and generating charged carriers; and a multiplier region having a multiplication layer; wherein the multiplier region is on a mesa structure separate from the absorber region and is coupled to the absorber region by a bridge for transferring charged carriers between the absorber region and multiplier region.
    Type: Application
    Filed: September 12, 2008
    Publication date: January 8, 2009
    Inventors: Ping Yuan, Joseph C. Boisvert, Dmitri D. Krut, Rengarajan Sudharsanan
  • Publication number: 20080308891
    Abstract: A photodetector and a method for fabricating a photodetector. The photodetector may include a substrate, a buffer layer formed on the substrate, and an absorption layer formed on the buffer layer for receiving incident photons and generating charged carriers. An N-doped interface layer may be formed on the absorption layer, an N-doped cap layer may be formed on the N-doped interface layer, and a dielectric passivation layer may be formed above the cap layer. A P+ diffusion region may be formed within the cap layer, the N-doped interface layer and at least a portion of the absorption layer, and at least one contact may be formed on and coupled to the P+ diffusion region.
    Type: Application
    Filed: June 13, 2007
    Publication date: December 18, 2008
    Inventors: Joseph Charles Boisvert, Takahiro D. Isshiki, Rengarajan Sudharsanan
  • Publication number: 20080121866
    Abstract: An avalanche photodiode detector is provided. The avalanche photodiode detector comprises an absorber region having an absorption layer for receiving incident photons and generating charged carriers; and a multiplier region having a multiplication layer; wherein the multiplier region is on a mesa structure separate from the absorber region and is coupled to the absorber region by a bridge for transferring charged carriers between the absorber region and multiplier region.
    Type: Application
    Filed: November 27, 2006
    Publication date: May 29, 2008
    Inventors: Ping Yuan, Joseph C. Boisvert, Dmitri D. Krut, Rengarajan Sudharsanan
  • Publication number: 20070131977
    Abstract: A photodiode and method of forming a photodiode has a substrate. An absorption layer is formed on the substrate to absorb lightwaves of a desired frequency range. A multiplication structure is formed on the absorption layer. The multiplication layer uses a low dark current avalanching material. The absorption layer and the multiplication layer are formed into at least one mesa having in an inverted “T” configuration to reduce junction area between the absorption layer and the multiplication layer. A dielectric layer is formed over the at least one mesa. At least one contact is formed on the dielectric layer and coupled to the at least one mesa.
    Type: Application
    Filed: December 8, 2005
    Publication date: June 14, 2007
    Inventors: Joseph Boisvert, Rengarajan Sudharsanan
  • Patent number: 7049640
    Abstract: An avalanche photodiode having a reduced capacitance is provided. The avalanche photodiode includes a wide band gap layer in its depletion region. The width of the wide band gap layer increases the extent of the depletion region, thereby reducing the capacitance while minimizing the impact on the dark current.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: May 23, 2006
    Assignee: The Boeing Company
    Inventors: Joseph C. Boisvert, Rengarajan Sudharsanan
  • Publication number: 20060048811
    Abstract: Laser power conversion with multiple stacked junctions or subcells are disclosed to produce increased output. Both vertical and horizontal integration are disclosed for flexible, efficient, and cost-effective laser power conversion. One embodiment of a laser power converter includes at least a first or top subcell that receives incident laser light, a second subcell below the first subcell that subsequently receives the laser light, and a tunnel junction between the first and second subcells.
    Type: Application
    Filed: September 9, 2004
    Publication date: March 9, 2006
    Inventors: Dimitri Krut, Rengarajan Sudharsanan, Nassar Karam, Richard King
  • Publication number: 20060001118
    Abstract: An avalanche photodiode having a reduced capacitance is provided. The avalanche photodiode includes a wide band gap layer in its depletion region. The width of the wide band gap layer increases the extent of the depletion region, thereby reducing the capacitance while minimizing the impact on the dark current.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 5, 2006
    Inventors: Joseph Boisvert, Rengarajan Sudharsanan
  • Patent number: 6787818
    Abstract: A diffused junction semiconductor (12) for detecting light (48) at a predetermined wavelength is provided including a base (30) and an epitaxial structure (32) electrically coupled to the base (30). The epitaxial structure (32) forms a p-n junction (38) in the base (30). The epitaxial structure (32) includes at least one diffusion layer (50) electrically coupled to the base (30). At least one of the diffusion layers (50) contributes impurities in at least a portion of the base (30) to form the p-n junction (38) during growth of the epitaxial structure (32). A method for performing the same is also provided.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: September 7, 2004
    Assignee: The Boeing Company
    Inventors: Charles B. Morrison, Rengarajan Sudharsanan, Moran Haddad, Dimitri Krut, Joseph C. Boisvert, Richard R. King, Nasser H. Karam