Patents by Inventor Rengaswamy Srinivasan

Rengaswamy Srinivasan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170271647
    Abstract: A method of preparing a high capacity nanocomposite cathode of FeF3 in carbon pores may include preparing a nanoporous carbon precursor, employing electrochemistry or solution chemistry deposition to deposit Fe particles in the carbon pores, reacting nano Fe with liquid hydrofluoric acid to form nano FeF3 in carbon, and milling to achieve a desired particle size.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Jeremy D. Walker, Jeffrey P. Maranchi, Edward D. Russell, Jennifer L. Sample, Marcia W. Patchan, Lance M. Baird, Rengaswamy Srinivasan
  • Patent number: 9705124
    Abstract: A method of preparing a high capacity nanocomposite cathode of FeF3 in carbon pores may include preparing a nanoporous carbon precursor, employing electrochemistry or solution chemistry deposition to deposit Fe particles in the carbon pores, reacting nano Fe with liquid hydrofluoric acid to form nano FeF3 in carbon, and milling to achieve a desired particle size.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: July 11, 2017
    Assignee: The Johns Hopkins University
    Inventors: Jeremy D. Walker, Jeffrey P. Maranchi, Edward D. Russell, Jennifer L. Sample, Marcia W. Patchan, Lance M. Baird, Rengaswamy Srinivasan
  • Publication number: 20170149256
    Abstract: A battery charging monitor is provided including a non-invasive sensor electrically connected to at least one battery cell of at least one battery, which is configured to measure an internal temperature of the at least one battery cell. The non-invasive internal temperature sensor is connected to the microcontroller that is configured to determine a rate of change of the internal temperature of the at least one battery cell based on the internal temperature of the at least one battery cell, determine a state of charge of the at least one battery cell based on the rate of change of the internal temperature, and cause a charging rate to be applied, by a battery charger, to the at least one battery cell based on the determined state of charge.
    Type: Application
    Filed: March 28, 2016
    Publication date: May 25, 2017
    Inventors: Rengaswamy Srinivasan, Bliss G. Carkhuff, Lakshminarayan Srinivasan
  • Patent number: 9550855
    Abstract: A metallic microcapsule containing a polymeric microcapsule having one or more polymeric precursors encapsulated therein; and a metallic shell enclosing a volume containing the polymeric microcapsule is disclosed. Also disclosed is a self-healing coating composition comprising (a) a film-forming binder; and (b) metallic microcapsules, the metallic microcapsules being the same or different and containing a polymeric microcapsule containing one or more polymeric precursors encapsulated therein; and a metallic shell enclosing a volume containing the polymeric microcapsule.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: January 24, 2017
    Assignee: The Johns Hopkins University
    Inventors: Jason J. Benkoski, Rengaswamy Srinivasan, Jeffrey P. Maranchi
  • Patent number: 9331507
    Abstract: A battery charging system includes a charging source, at least one battery cell, a battery internal temperature sensor configured to measure an internal temperature of the at least one battery cell responsive to charging of the at least one battery cell by the charging source, and a charge controller. The charge controller is configured to receive indications of the internal temperature of the at least one battery cell over time, to identify an indication that the at least one battery cell is at a point of full charge based on rate of change of the internal temperature, and to interrupt power delivery from the charging source to the at least one battery cell responsive to the indication that the at least one battery cell is at the point of full charge.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: May 3, 2016
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Bliss G. Carkhuff
  • Patent number: 9281537
    Abstract: A thin film electrode is fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: March 8, 2016
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Patent number: 8961004
    Abstract: Methods and systems to determine an internal temperature of a rechargeable lithium-ion cell based on a phase shift of the cell. Internal cell temperature may be determined with respect to an internal anode temperature and/or an internal cathode temperature. Internal anode temperature may be determined based on a phase shift of a frequency within a range of approximately 40 Hertz (Hz) to 500 Hz. Internal cathode temperature may be determined based on a phase shift of a frequency of up to approximately 30 Hz. A temperature sensor as disclosed herein may be powered by a monitored cell with relatively little impact on cell charge, may be electrically coupled to cell but housed physically separate from the cell, and/or may monitor multiple cells in a multiplex fashion. A rate of change in phase shift may be used to initiate pre-emptive action, without determining corresponding temperatures.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: February 24, 2015
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Michael H. Butler, Bliss G. Carkhuff, Terry E. Phillips, Jeremy D. Walker, Oscar M. Uy, Andrew C. Baisden
  • Publication number: 20130312255
    Abstract: A thin film electrode is fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 28, 2013
    Applicant: Johns Hopkins Univesity
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Patent number: 8574767
    Abstract: Thin-film electrodes and battery cells, and methods of fabrication. A thin film electrode may be fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: November 5, 2013
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Publication number: 20130264999
    Abstract: A battery charging system includes a charging source, at least one battery cell, a battery internal temperature sensor configured to measure an internal temperature of the at least one battery cell responsive to charging of the at least one battery cell by the charging source, and a charge controller. The charge controller is configured to receive indications of the internal temperature of the at least one battery cell over time, to identify an indication that the at least one battery cell is at a point of full charge based on rate of change of the internal temperature, and to interrupt power delivery from the charging source to the at least one battery cell responsive to the indication that the at least one battery cell is at the point of full charge.
    Type: Application
    Filed: April 9, 2013
    Publication date: October 10, 2013
    Inventors: Rengaswamy Srinivasan, Bliss G. Carkhuff
  • Publication number: 20130220817
    Abstract: A method of preparing a high capacity nanocomposite cathode of FeF3 in carbon pores may include preparing a nanoporous carbon precursor, employing electrochemistry or solution chemistry deposition to deposit Fe particles in the carbon pores, reacting nano Fe with liquid hydrofluoric acid to form nano FeF3 in carbon, and milling to achieve a desired particle size.
    Type: Application
    Filed: August 17, 2012
    Publication date: August 29, 2013
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jeremy D. Walker, Jeffrey P. Maranchi, Edward D. Russell, Jennifer L. Sample, Marcia W. Patchan, Lance M. Baird, Rengaswamy Srinivasan
  • Publication number: 20130017405
    Abstract: A microcapsule is disposed in a self-healing coating having zinc powder particles dispersed therein. The microcapsule includes at least a silane coupling agent encapsulated within a volume defined by a metallic or polymeric shell that is rupturable responsive to formation of a fissure in the self-healing coating.
    Type: Application
    Filed: August 23, 2012
    Publication date: January 17, 2013
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jason J. Benkoski, Rengaswamy Srinivasan, Jeffrey P. Maranchi
  • Publication number: 20120155507
    Abstract: Methods and systems to determine an internal temperature of a rechargeable lithium-ion cell based on a phase shift of the cell. Internal cell temperature may be determined with respect to an internal anode temperature and/or an internal cathode temperature. Internal anode temperature may be determined based on a phase shift of a frequency within a range of approximately 40 Hertz (Hz) to 500 Hz. Internal cathode temperature may be determined based on a phase shift of a frequency of up to approximately 30 Hz. A temperature sensor as disclosed herein may be powered by a monitored cell with relatively little impact on cell charge, may be electrically coupled to cell but housed physically separate from the cell, and/or may monitor multiple cells in a multiplex fashion. A rate of change in phase shift may be used to initiate pre-emptive action, without determining corresponding temperatures.
    Type: Application
    Filed: October 18, 2011
    Publication date: June 21, 2012
    Applicant: JOHNS HOPKINS UNIVERSITY
    Inventors: Rengaswamy Srinivasan, Michael H. Butler, Bliss G. Carkhuff, Terry E. Phillips, Jeremy D. Walker, Oscar M. Uy, Andrew C. Baisden
  • Publication number: 20110293958
    Abstract: A metallic microcapsule containing a polymeric microcapsule having one or more polymeric precursors encapsulated therein; and a metallic shell enclosing a volume containing the polymeric microcapsule is disclosed. Also disclosed is a self-healing coating composition comprising (a) a film-forming binder; and (b) metallic microcapsules, the metallic microcapsules being the same or different and containing a polymeric microcapsule containing one or more polymeric precursors encapsulated therein; and a metallic shell enclosing a volume containing the polymeric microcapsule.
    Type: Application
    Filed: April 11, 2011
    Publication date: December 1, 2011
    Inventors: Jason J. Benkoski, Rengaswamy Srinivasan, Jeffrey P. Maranchi
  • Publication number: 20110123852
    Abstract: Thin-film electrodes and battery cells, and methods of fabrication. A thin film electrode may be fabricated from a non-metallic, non-conductive porous support structure having pores with micrometer-range diameters. The support may include a polymer film. A first surface of the support is metalized, and the pores are partially metallized to create metal tubes having a thickness within a range of 50 to 150 nanometers, in contact with the metal layer. An active material is disposed within metalized portions of the pores. An electrolyte is disposed within non-metalized portions of the pores. Active materials may be selected to create an anode and a cathode. Non-metalized surfaces of the anode and cathode may be contacted to one another to form a battery cell, with the non-metalized electrolyte-containing portions of the anode facing the electrolyte-containing portions of the cathode pores. A battery cell may be fabricated as, for example, a nickel-zinc battery cell.
    Type: Application
    Filed: May 18, 2010
    Publication date: May 26, 2011
    Inventors: Rengaswamy Srinivasan, Jeffrey P. Maranchi, Lance M. Baird, Ryan M. Deacon, Arthur S. Francomacaro, Paul J. Biermann, Craig B. Leese, Gary E. Peck
  • Patent number: 7554294
    Abstract: A battery health monitor (BHM) that operates as a battery-mountable full-spectrum alternating current (ac) impedance meter that facilitates monitoring a state-of-charge and a state-of-health of a battery. The BHM is used for monitoring one or more electrical parameters, e.g., impedance, of a battery. The BHM includes: a current sink coupled to the first terminal and configured to sink therefrom an oscillatory current so as to cause the battery to produce at a first terminal thereof an oscillatory voltage equal to or less than a dc operating voltage of the battery that would be present at the first terminal in the absence of the oscillatory current; and a voltage sensor configured to sense the oscillatory voltage at the first terminal.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: June 30, 2009
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Hassan M. Saffarian, Terry E. Phillips, Paul R. Zarriello, Bliss G. Carkhuff, Subhas Chalasani
  • Patent number: 7148706
    Abstract: An embeddable corrosion rate meter (ECRM) for detecting and measuring corrosion in metal and concrete structures is provided. The system comprises an electrochemical cell with at least one working electrode evenly separated from a counter electrode, wherein a separation distance between electrodes determines an electrolyte medium resistance and the electrolyte medium resistance is less than or equal to a polarization resistance.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: December 12, 2006
    Assignee: Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Hassan M. Saffarian, Terry E. Phillips
  • Publication number: 20060170397
    Abstract: A battery health monitor (BHM) that operates as a battery-mountable full-spectrum alternating current (ac) impedance meter that facilitates monitoring a state-of-charge and a state-of-health of a battery. The BHM is used for monitoring one or more electrical parameters, e.g., impedance, of a battery. The BHM includes: a current sink coupled to the first terminal and configured to sink therefrom an oscillatory current so as to cause the battery to produce at a first terminal thereof an oscillatory voltage equal to or less than a dc operating voltage of the battery that would be present at the first terminal in the absence of the oscillatory current; and a voltage sensor configured to sense the oscillatory voltage at the first terminal.
    Type: Application
    Filed: January 28, 2005
    Publication date: August 3, 2006
    Inventors: Rengaswamy Srinivasan, Hassan Saffarian, Terry Phillips, Paul Zarriello, Bliss Carkhuff, Subhas Chalasani
  • Publication number: 20060125480
    Abstract: An embeddable corrosion rate meter (ECRM) for detecting and measuring corrosion in metal and concrete structures is provided. The system comprises an electrochemical cell with at least one working electrode evenly separated from a counter electrode, wherein a separation distance between electrodes determines an electrolyte medium resistance and the electrolyte medium resistance is less than or equal to a polarization resistance.
    Type: Application
    Filed: July 18, 2003
    Publication date: June 15, 2006
    Inventors: Rengaswamy Srinivasan, Hassan Saffarian, Terry Philips
  • Patent number: 7005056
    Abstract: A method for inhibiting corrosion, e.g., pitting corrosion, of alloys is provided. Particularly, the method comprises contacting at least a portion of a surface of the alloy with an aqueous solution comprising a salt of one or more rare earth elements selected from the group consisting of yttrium, gadolinium, cerium, europium, terbium, samarium, neodymium, praseodymium, lanthanum, holmium, ytterbium, dysprosium and erbium; and establishing a voltage differential between an anode comprising the alloy and a cathode in the solution at an effective level and for a sufficient period of time wherein a rare earth element oxide-containing coating is formed on the surface of the alloy to inhibit corrosion thereof.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: February 28, 2006
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Hassan M. Saffarian, Stuart A. Fogel