Patents by Inventor Renkun Chen

Renkun Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11819823
    Abstract: Thermo-responsive hydrogel composite (TRHC) desiccants having high adsorption capacities, fast adsorption/desorption rates, and low regeneration temperatures (Treg) compared to traditional desiccants. TRHC desiccants may be synthesized by freeze drying. The porous structures resulting from freeze drying copolymers of thermo-responsive polymers and/or hygroscopic agents may be combined with hygroscopic inorganic salts, resulting in TRHC desiccants having superior performance properties.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: November 21, 2023
    Assignees: Alliance for Sustainable Energy, LLC, The Regents of the University of California
    Inventors: Shuang Cui, Jason David Woods, Renkun Chen, Paul William Meyer
  • Patent number: 11728074
    Abstract: This invention relates to magnetocaloric materials comprising alloys useful for magnetic refrigeration applications. In some embodiments, the disclosed alloys may be Cerium, Neodymium, and/or Gadolinium based compositions that are fairly inexpensive, and in some cases exhibit only 2nd order magnetic phase transitions near their curie temperature, thus there are limited thermal and structural hysteresis losses. This makes these compositions attractive candidates for use in magnetic refrigeration applications. Surprisingly, the performance of the disclosed materials is similar or better to many of the known expensive rare-earth based magnetocaloric materials.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: August 15, 2023
    Assignees: General Engineering & Research, L.L.C., The Regents of the University of California
    Inventors: Robin Ihnfeldt, Eunjeong Kim, Sungho Jin, Renkun Chen, Xia Xu
  • Publication number: 20220252308
    Abstract: Systems and methods disclosed herein relate to a cryogenic refrigeration system which may use a compression based cryocooler or liquid nitrogen pre-cool to cool a medium to ˜80K, and may in conjunction with a magnetic refrigeration system operating in the sub-80K temperature regime to provide cooling to a medium to temperatures below 80K. In some embodiments, the disclosed system may be useful for cooling on the order of about 3 kg/day to about 300 kg/day of hydrogen gas to liquid form, with higher efficiency than a standard vapor compression based system. This higher efficiency may make the system a more attractive candidate for use in cryogenic cooling applications.
    Type: Application
    Filed: July 28, 2020
    Publication date: August 11, 2022
    Inventors: Robin Ihnfeldt, Renkun Chen, Sungho Jin, Tianshi Feng, Sarath Adapa
  • Publication number: 20220062858
    Abstract: The present disclosure relates to thermo-responsive hydrogel composite (TRHC) desiccants having high adsorption capacities, fast adsorption/desorption rates, and low regeneration temperatures (Treg) compared to traditional desiccants. In some embodiments of the present disclosure, TRHC desiccants may be synthesized by freeze drying. In some embodiments of the present disclosure, the porous structures resulting from freeze drying copolymers of thermo-responsive polymers and/or hygroscopic agents may be combined with hygroscopic inorganic salts, resulting in TRHC desiccants having superior performance properties.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 3, 2022
    Inventors: Shuang CUI, Jason David WOODS, Renkun CHEN, Paul William MEYER
  • Patent number: 11225703
    Abstract: This invention relates to magnetocaloric materials comprising ternary alloys useful for magnetic refrigeration applications. The disclosed ternary alloys are Cerium, Neodymium, and/or Gadolinium based compositions that are fairly inexpensive, and in some cases exhibit only 2nd order magnetic phase transitions near their curie temperature, thus there are no thermal and structural hysteresis losses. This makes these compositions attractive candidates for use in magnetic refrigeration applications. The performance of the disclosed materials is similar or better to many of the known expensive rare-earth based magnetocaloric materials.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: January 18, 2022
    Assignees: General Engineering & Research, L.L.C., The Regents of The University of California
    Inventors: Robin Ihnfeldt, Sungho Jin, Renkun Chen, Xia Xu, Elizabeth Caldwell, Eunjeong Kim
  • Publication number: 20220013704
    Abstract: Thermoelectric devices (TE) devices may be used to power wearable electronics, such as watches and sensors by harvesting heat from the body. These TE devices may fully power or partially power the wearable devices to extend a usage time, or to recharge a battery. In other example embodiments, TE devices can be used to provide heating and/or cooling. The TE devices can be integrated into garments such as clothes, vests, and armbands for outdoor and indoor environments. For outdoor environments, applications include, but are not limited to, sports such as golfing, bicycling, running, walking, training, soccer, hiking, and other outdoor activities related to occupations, such as construction, fire-fighting, military operations, law enforcement, farming, underground mining, and so on. In other example embodiments, TE devices can be used to provide thermal camouflaging for people and objects so as to not be seen by thermal imaging devices.
    Type: Application
    Filed: November 20, 2019
    Publication date: January 13, 2022
    Inventors: Renkun Chen, Sahngki Hong
  • Publication number: 20210065941
    Abstract: This invention relates to magnetocaloric materials comprising alloys useful for magnetic refrigeration applications. In some embodiments, the disclosed alloys may be Cerium, Neodymium, and/or Gadolinium based compositions that are fairly inexpensive, and in some cases exhibit only 2nd order magnetic phase transitions near their curie temperature, thus there are limited thermal and structural hysteresis losses. This makes these compositions attractive candidates for use in magnetic refrigeration applications. Surprisingly, the performance of the disclosed materials is similar or better to many of the known expensive rare-earth based magnetocaloric materials.
    Type: Application
    Filed: February 20, 2019
    Publication date: March 4, 2021
    Inventors: Robin Ihnfeldt, Eunjeong Kim, Sungho Jin, Renkun Chen, Xia Xu
  • Publication number: 20190352747
    Abstract: This invention relates to magnetocaloric materials comprising ternary alloys useful for magnetic refrigeration applications. The disclosed ternary alloys are Cerium, Neodymium, and/or Gadolinium based compositions that are fairly inexpensive, and in some cases exhibit only 2nd order magnetic phase transitions near their curie temperature, thus there are no thermal and structural hysteresis losses. This makes these compositions attractive candidates for use in magnetic refrigeration applications. The performance of the disclosed materials is similar or better to many of the known expensive rare-earth based magnetocaloric materials.
    Type: Application
    Filed: January 8, 2018
    Publication date: November 21, 2019
    Applicants: General Engineering & Research, L.L.C., The Regents of the University of California
    Inventors: Robin IHNFELDT, Sungho JIN, Renkun CHEN, Xia XU, Elizabeth CALDWELL, Eunjeong KIM
  • Patent number: 10451321
    Abstract: This invention relates to a cooling device which utilizes both thermoelectric and magnetocaloric mechanisms for enhanced cooling applications. Using high thermal conductivity magnetocaloric composites in conjunction with thermoelectric elements acting as thermal switches which are electrically coupled to a magnetization and demagnetization cycle enables the use of larger quantities of magnetocaloric material, and high efficiency solid state cooling can be achieved. Solid state cooling devices are useful for a variety of industrial applications which require cooling, such as, but not limited to cooling of microelectronic devices, cooling on space platforms, etc.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: October 22, 2019
    Assignees: General Engineering & Research, L.L.C., The Regents of The University of California
    Inventors: Robin Veronica Ihnfeldt, Xia Xu, Renkun Chen, Sungho Jin, Jianlin Zheng
  • Patent number: 10371416
    Abstract: Techniques, systems, devices and materials are disclosed for spectrally selective coatings for optical surfaces having high solar absorptivity, low infrared emissivity, and strong durability at elevated temperatures. In one aspect, a spectrally selective coating includes a substrate formed of a light absorbing material, and a composite material formed over the substrate and including nanoparticles dispersed in a dielectric material, in which the composite material forms a coating capable of absorbing solar energy in a selected spectrum and reflecting the solar energy in another selected spectrum.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: August 6, 2019
    Assignee: The Regents of the University of California
    Inventors: Sungho Jin, Renkun Chen, Zhaowei Liu, Tae Kyoung Kim
  • Publication number: 20190035996
    Abstract: A thermoelectric material ink including a binder with a cellulosic ether, a thermoelectric element, and a thermoelectric device that are manufactured using the thermoelectric material ink, and a method of manufacturing the thermoelectric device are provided. A printed thermoelectric device having high thermoelectric performance may be manufactured using the thermoelectric material ink.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 31, 2019
    Inventors: Renkun CHEN, Joseph WANG, Sunmi SHIN, Rajan KUMAR, Jongwook ROH
  • Patent number: 10184051
    Abstract: Methods, systems, and devices are disclosed for fabricating and implementing optically absorbing coatings. In one aspect, an optically selective coating includes a substrate formed of a solar energy absorbing material, and a nanostructure material formed over the substrate as a coating capable of absorbing solar energy in a selected spectrum and reflecting the solar energy in another selected spectrum. A concentrating solar power (CSP) system includes heat transfer fluids (HTFs); thermal energy storage system (TES); and solar receivers in communication with HTFs and including a light absorbing coating layer based on cobalt oxide nanoparticles.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: January 22, 2019
    Assignee: The Regents of the University of California
    Inventors: Sungho Jin, Renkun Chen, Zhaowei Liu, Jaeyun Moon, Tae Kyoung Kim, Bryan Van Saders
  • Publication number: 20180361704
    Abstract: Adaptive smart textiles that facilitate reduced energy consumption are described. In one implementation, a dual pane fabric arrangement includes a first pane of fabric and a second pane of fabric separated by an intra-layer gap, and an insert layer disposed in the intra-layer gap, wherein the insert layer causes a thickness of the intra-layer gap to change responsive to changes in ambient temperature.
    Type: Application
    Filed: December 1, 2016
    Publication date: December 20, 2018
    Inventors: Sungho JIN, Calvin GARDNER, Ying ZHONG, Gunwoo KIM, Renkun CHEN, Chulmin CHOI, Yuongjin KIM
  • Publication number: 20180066875
    Abstract: This invention relates to a cooling device which utilizes both thermoelectric and magnetocaloric mechanisms for enhanced cooling applications. Using high thermal conductivity magnetocaloric composites in conjunction with thermoelectric elements acting as thermal switches which are electrically coupled to a magnetization and demagnetization cycle enables the use of larger quantities of magnetocaloric material, and high efficiency solid state cooling can be achieved. Solid state cooling devices are useful for a variety of industrial applications which require cooling, such as, but not limited to cooling of microelectronic devices, cooling on space platforms, etc.
    Type: Application
    Filed: September 1, 2017
    Publication date: March 8, 2018
    Inventors: Robin Veronica Ihnfeldt, Xia Xu, Renkun Chen, Sungho Jin, Jianlin Zheng
  • Publication number: 20170138646
    Abstract: This invention relates to a cooling device which utilizes both thermoelectric and magnetocaloric mechanisms for enhanced cooling applications. The incorporation of a magnetocaloric mechanism into a thermoelectric device provides additional cooling on the cold side of the device, and may improve the device efficiency, which is useful for many industrial applications, including cooling of microelectronic devices. Embodiments of the invention provide a cooling device comprising a hot side, a cold side, at least one thermoelectric element, at least one magnetocaloric material, at least one permanent magnet, and at least one mechanical movement system. In some embodiments, the magnetocaloric component of the cooling device is optimized to provide enhanced cooling on the cold side of the cooling device.
    Type: Application
    Filed: October 11, 2016
    Publication date: May 18, 2017
    Inventors: Robin Veronica Ihnfeldt, Sungho Jin, Renkun Chen, Dongwon Chun, Chin-Hung Liu
  • Publication number: 20170073530
    Abstract: Methods, systems, and devices are disclosed for fabricating and implementing optically absorbing coatings. In one aspect, an optically selective coating includes a substrate formed of a solar energy absorbing material, and a nanostructure material formed over the substrate as a coating capable of absorbing solar energy in a selected spectrum and reflecting the solar energy in another selected spectrum. A concentrating solar power (CSP) system includes heat transfer fluids (HTFs); thermal energy storage system (TES); and solar receivers in communication with HTFs and including a light absorbing coating layer based on cobalt oxide nanoparticles.
    Type: Application
    Filed: March 13, 2015
    Publication date: March 16, 2017
    Inventors: Sungho Jin, Renkun Chen, Zhaowei Liu, Jaeyun Moon, Tae Kyoung Kim, Bryan Van Saders
  • Patent number: 9219215
    Abstract: The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: December 22, 2015
    Assignee: The Regents of The University of California
    Inventors: Peidong Yang, Arunava Majumdar, Allon I. Hochbaum, Renkun Chen, Raul Diaz Delgado
  • Publication number: 20150107582
    Abstract: Techniques, systems, devices and materials are disclosed for spectrally selective coatings for optical surfaces having high solar absorptivity, low infrared emissivity, and strong durability at elevated temperatures. In one aspect, a spectrally selective coating includes a substrate formed of a light absorbing material, and a composite material formed over the substrate and including nanoparticles dispersed in a dielectric material, in which the composite material forms a coating capable of absorbing solar energy in a selected spectrum and reflecting the solar energy in another selected spectrum.
    Type: Application
    Filed: May 6, 2013
    Publication date: April 23, 2015
    Inventors: Sungho Jin, Renkun Chen, Zhaowei Liu, Tae Kyoung Kim
  • Patent number: 8729381
    Abstract: The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: May 20, 2014
    Assignee: The Regents of The University of California
    Inventors: Peidong Yang, Arunava Majumdar, Allon I. Hochbaum, Renkun Chen, Raul Diaz Delgado
  • Publication number: 20110114145
    Abstract: The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.
    Type: Application
    Filed: August 21, 2008
    Publication date: May 19, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Arunava Majumdar, Allon I. Hochbaum, Renkun Chen, Raul Diaz Delgado