Patents by Inventor Resham Singh

Resham Singh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12290840
    Abstract: A sieve system includes a sieve for screening material by selectively passing first particles and not passing second particles of the material based on respective dimensions of the particles relative to dimensions of screening apertures in the sieve. A holding container feeds material to the sieve and a fines container receives the first particles screened by the sieve. A first fines container load is measured at a first time, and a second fines container load is measured at a second time. A fines rate is determined by a rate of change of the fines container load based on the measured first and second fines container loads and the first and second times. An operating condition of the sieve system is based on the fines rate and may provide an indication that the operation of the sieve, another component, or the sieve system as a whole is acceptable or unacceptable.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: May 6, 2025
    Assignee: Russell Finex Ltd
    Inventor: Resham Singh
  • Publication number: 20240382424
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Application
    Filed: December 12, 2023
    Publication date: November 21, 2024
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-Moreno, Christopher Mader
  • Patent number: 11883535
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: January 30, 2024
    Assignees: NORTHWESTERN UNIVERSITY, EXICURE, INC.
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-Moreno, Christopher Mader
  • Publication number: 20220395863
    Abstract: A sieve system includes a sieve for screening material by selectively passing first particles and not passing second particles of the material based on respective dimensions of the particles relative to dimensions of screening apertures in the sieve. A holding container feeds material to the sieve and a fines container receives the first particles screened by the sieve. A first fines container load is measured at a first time, and a second fines container load is measured at a second time. A fines rate is determined by a rate of change of the fines container load based on the measured first and second fines container loads and the first and second times. An operating condition of the sieve system is based on the fines rate and may provide an indication that the operation of the sieve, another component, or the sieve system as a whole is acceptable or unacceptable.
    Type: Application
    Filed: November 6, 2020
    Publication date: December 15, 2022
    Inventor: Resham Singh
  • Publication number: 20210052497
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Application
    Filed: September 3, 2020
    Publication date: February 25, 2021
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-Moreno, Christopher Mader
  • Patent number: 10792251
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: October 6, 2020
    Assignees: NORTHWESTERN UNIVERSITY, EXICURE, INC.
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-Moreno, Christopher Mader
  • Publication number: 20200022913
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Application
    Filed: January 8, 2019
    Publication date: January 23, 2020
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-Moreno, Christopher Mader
  • Patent number: 10182988
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: January 22, 2019
    Assignees: NORTHWESTERN UNIVERSITY, EXICURE, INC.
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-Moreno, Christopher Mader
  • Publication number: 20160310425
    Abstract: Liposomes termed as small unilamellar vesicles (SUVs), can be synthesized in the 20-50 nm size range, but encounter challenges such as instability and aggregation leading to inter-particle fusion. This limits their use as a therapeutic delivery agent. Increasing the surface negative charge of SUVs, via the attachment of anionic entities such as DNA/RNA, increases the colloidal stability of these vesicles. Additionally, the dense spherical arrangement and radial orientation of nucleic acids exhibits unique chemical and biological properties, unlike their linear counterparts. These liposomal particles, are non-toxic and though anionic, can efficiently enter cells without the aid of ancillary cationic transfection agents in a non-immunogenic fashion. These exceptional properties allow their use as delivery agents for gene regulation in different therapies and offer an alternative platform to metal core spherical nucleic acids.
    Type: Application
    Filed: December 3, 2014
    Publication date: October 27, 2016
    Inventors: Chad A. Mirkin, Sonbinh T. Nguyen, Resham Singh Banga, Natalia Chernyak, Sergei Gryaznov, Aleksandar Radovic-morena, Christopher Mader