Patents by Inventor Reto B. SCHOCH

Reto B. SCHOCH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9753007
    Abstract: A method and system are presented for fast and efficient isolation, purification and quantitation of nucleic acids from complex biological samples using isotachophoresis in microchannels. In an embodiment, a sieving medium may be used to enhance selectivity. In another embodiment, PCR-friendly chemistries are used to purify nucleic acids from complex biological samples and yield nucleic acids ready for further analysis including for PCR. In another embodiment, small RNAs from biological samples are extracted, isolated, preconcentrated and quantitated using on-chip ITP with a high efficiency sieving medium. The invention enables fast concentration and separation (takes 10s to 100s of seconds) of nucleic acids with high selectivity and using lower volumes of reagents (order of 10s of ?L to focus less than 1 ?g/?L of nucleic acid).
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: September 5, 2017
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Robert D. Chambers, Juan G. Santiago, Alexandre Persat, Reto B. Schoch, Mostafa Ronaghi
  • Patent number: 8846314
    Abstract: A method and system are presented for fast and efficient isolation, purification and quantitation of nucleic acids from complex biological samples using isotachophoresis in microchannels. In an embodiment, a sieving medium may be used to enhance selectivity. In another embodiment, PCR-friendly chemistries are used to purify nucleic acids from complex biological samples and yield nucleic acids ready for further analysis including for PCR. In another embodiment, small RNAs from biological samples are extracted, isolated, preconcentrated and quantitated using on-chip ITP with a high efficiency sieving medium. The invention enables fast concentration and separation (takes 10s to 100s of seconds) of nucleic acids with high selectivity and using lower volumes of reagents (order of 10s of ?L to focus less than 1 pg/?L of nucleic acid).
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: September 30, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Robert D. Chambers, Juan G. Santiago, Alexandre Persat, Reto B. Schoch, Mostafa Ronaghi
  • Publication number: 20100224494
    Abstract: A method and system are presented for fast and efficient isolation, purification and quantitation of nucleic acids from complex biological samples using isotachophoresis in microchannels. In an embodiment, a sieving medium may be used to enhance selectivity. In another embodiment, PCR-friendly chemistries are used to purify nucleic acids from complex biological samples and yield nucleic acids ready for further analysis including for PCR. In another embodiment, small RNAs from biological samples are extracted, isolated, preconcentrated and quantitated using on-chip ITP with a high efficiency sieving medium. The invention enables fast concentration and separation (takes 10s to 100s of seconds) of nucleic acids with high selectivity and using lower volumes of reagents (order of 10s of ?L to focus less than 1 pg/?L of nucleic acid).
    Type: Application
    Filed: March 2, 2010
    Publication date: September 9, 2010
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Robert D. Chambers, Juan G. Santiago, Alexandre Persat, Reto B. Schoch, Mostafa Ronaghi
  • Publication number: 20090136948
    Abstract: The present invention provides a device/kit and methods of use thereof in rapid detection of target molecule binding to a cognate binding partner. The methods, inter-alia, make use of a device comprising channels or reservoirs, which are linked to nanochannels, whereby upon application of the cognate binding partner to the nanochannel comprising the target molecule under flow, a detectable change in conductance, capacitance or fluorescence or surface potential occurs.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 28, 2009
    Inventors: Jongyoon HAN, Reto B. SCHOCH, Lih Feng CHEOW