Patents by Inventor Reto Kessler

Reto Kessler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230307159
    Abstract: The present invention relates to high-resistivity permanent magnets, their preparation and their application in electrical machines. A permanent magnet according to the present invention comprises a permanent magnet comprising a magnetic material and a shaped inorganic insulating element, wherein a shape and a size of the shaped inorganic insulating element have been substantially unchanged by the sintering, wherein the shaped inorganic insulating element has a width and a length which are both at least 10 times larger than an average grain diameter of the magnetic material after sintering, and wherein an arithmetic average waviness Wa of an interface between the magnetic material and the shaped inorganic insulating element is less than 10% of a local wall thickness of the shaped inorganic insulating element after sintering.
    Type: Application
    Filed: September 3, 2020
    Publication date: September 28, 2023
    Inventors: Lavinia Scherf, Jacim Jacimovic, Reto Kessler, Darren Tremelling, Ghanshyam Shrestha
  • Publication number: 20220172889
    Abstract: A method of producing a permanent magnet includes forming a magnetisable workpiece by additive manufacturing and forming the permanent magnet by partitioning the magnetisable workpiece. The additive manufacturing includes steps of forming a first powder layer by depositing a first powder, the first powder being ferromagnetic; forming a first workpiece layer of the magnetisable workpiece by irradiating a predetermined first area of the first powder layer by means of a focused energy beam to fuse the first powder in the first area; and repeating the above steps multiple times to form further workpiece layers of the magnetisable workpiece. The permanent magnet is formed by partitioning the magnetisable workpiece, where an exposed surface of the permanent magnet formed by the partitioning is non-parallel to the first workpiece layer, and where the permanent magnet produces an external magnetic field having a magnetic field strength of at least 1 kA/m.
    Type: Application
    Filed: February 21, 2020
    Publication date: June 2, 2022
    Applicant: ABB Schweiz AG
    Inventors: Jacim Jacimovic, Thomas Christen, Lavinia Scherf, Reto Kessler, Lorenz Herrmann, Eric Denervaud
  • Patent number: 9672964
    Abstract: The present invention relates to a varistor material for a surge arrester with target switching field strength ranging from 250 to 400 V/mm comprising ZnO forming a ZnO phase and Bi expressed as Bi2O3 forming an intergranular bismuth oxide phase, said varistor material further comprising a spinel phase, characterized in that the amount of a pyrochlore phase comprised in the varistor material is such, that the ratio of the pyrochlore phase to the spinel phase is less than 0.15:1.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: June 6, 2017
    Assignee: ABB SCHWEIZ AG
    Inventors: Felix Greuter, Michael Hagemeister, Oliver Beck, Ragnar Osterlund, Reto Kessler
  • Publication number: 20110079755
    Abstract: The present invention relates to a varistor material for a surge arrester with target switching field strength ranging from 250 to 400 V/mm comprising ZnO forming a ZnO phase and Bi expressed as Bi2O3 forming an intergranular bismuth oxide phase, said varistor material further comprising a spinel phase, characterized in that the amount of a pyrochlore phase comprised in the varistor material is such, that the ratio of the pyrochlore phase to the spinel phase is less than 0.15:1.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 7, 2011
    Applicant: ABB TECHNOLOGY AG
    Inventors: Felix GREUTER, Michael HAGEMEISTER, Oliver BECK, Ragnar OSTERLUND, Reto KESSLER
  • Patent number: 7868732
    Abstract: The disclosure relates to an overvoltage protection means containing ZnO microvaristor particles for protecting electrical elements and a method to produce the means. Single microvaristor particles are placed in an arrangement having a monolayer thickness and are electrically coupled to the electrical element to protect it against overvoltages. Embodiments, among other things, relate to: 1-dimensional or 2-dimensional arrangements of microvaristor particles; placement of single microvaristors on a carrier; the carrier being planar or string-like, being structured, being a sticky tape, having fixation means for fixing the microvaristors, or having electrical coupling means. The monolayered overvoltage protection means allows very tight integration and high flexibility in shaping and adapting it to the electric or electronic element. Furthermore, reduced capacitance and hence reaction times of overvoltage protection are achieved.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: January 11, 2011
    Assignee: ABB Research Ltd
    Inventors: Markus Hoidis, Felix Greuter, Lise Donzel, Reto Kessler
  • Patent number: 7651636
    Abstract: The invention relates to a nonlinear electrical material with improved microvaristor filler (1?), to devices and electrical apparatuses comprising such nonlinear electrical material and to a production method thereof. According to invention, the filler (1?) comprises larger spherical particles (5) and smaller irregular particles (6) that are arranged interstitially and provide non-point-like and/or multiple contact areas (56, 56a, 56b, 66) owing to their irregular outer shape comprising edges and faces. Embodiments, among other things, relate to: spherical particles (5) being calcinated and broken-up to retain their original shape; irregular, spikly shaped, particles (6) obtained by calcinating or sintering and crushing or fracturing granules or blocks; and addition of a third filler fraction.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: January 26, 2010
    Assignee: ABB Research Ltd
    Inventors: Hansjoerg Gramespacher, Michael Hagemeister, Petra Kluge-Weiss, Felix Greuter, Lise Donzel, Reto Kessler
  • Patent number: 7618550
    Abstract: The polymer compound contains a polymer matrix and a filler embedded in the matrix. The filler comprises two filler components with nonlinear current-voltage characteristics deviating from one another. By selection of suitable amounts of these filler components, a polymer compound with a predetermined nonlinear current-voltage characteristic deviating from these two characteristics can be formed in this way.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: November 17, 2009
    Assignee: ABB Research Ltd
    Inventors: Felix Greuter, Yvo Dirix, Petra Kluge-Weiss, Walter Schmidt, Reto Kessler
  • Publication number: 20090045907
    Abstract: The disclosure relates to an overvoltage protection means containing ZnO microvaristor particles for protecting electrical elements and a method to produce the means. Single microvaristor particles are placed in an arrangement having a monolayer thickness and are electrically coupled to the electrical element to protect it against overvoltages. Embodiments, among other things, relate to: 1-dimensional or 2-dimensional arrangements of microvaristor particles; placement of single microvaristors on a carrier; the carrier being planar or string-like, being structured, being a sticky tape, having fixation means for fixing the microvaristors, or having electrical coupling means. The monolayered overvoltage protection means allows very tight integration and high flexibility in shaping and adapting it to the electric or electronic element. Furthermore, reduced capacitance and hence reaction times of overvoltage protection are achieved.
    Type: Application
    Filed: October 22, 2008
    Publication date: February 19, 2009
    Applicant: ABB Research Ltd
    Inventors: Markus Hoidis, Felix Greuter, Lise Donzel, Reto Kessler
  • Publication number: 20080023678
    Abstract: The polymer compound contains a polymer matrix and a filler embedded in the matrix. The filler comprises two filler components with nonlinear current-voltage characteristics deviating from one another. By selection of suitable amounts of these filler components, a polymer compound with a predetermined nonlinear current-voltage characteristic deviating from these two characteristics can be formed in this way.
    Type: Application
    Filed: August 20, 2007
    Publication date: January 31, 2008
    Applicant: ABB Research Ltd.
    Inventors: Felix Greuter, Yvo Dirix, Petra Kluge-Weiss, Walter Schmidt, Reto Kessler
  • Patent number: 7320762
    Abstract: The polymer compound contains a polymer matrix and a filler embedded in the matrix. The filler comprises two filler components with nonlinear current-voltage characteristics deviating from one another. By selection of suitable amounts of these filler components, a polymer compound with a predetermined nonlinear current-voltage characteristic deviating from these two characteristics can be formed in this way.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: January 22, 2008
    Assignee: ABB Schweiz AG
    Inventors: Felix Greuter, Yvo Dirix, Petra Kluge-Weiss, Walter Schmidt, Reto Kessler
  • Patent number: 7318844
    Abstract: The manufacturing method for an electroceramic component (1), for example a varistor (1), comprises a laser irradiation of a part (5; 6) of the surface of an electroceramic body (2) before a metallization (3; 4) is applied to the part (5; 6) of the surface. By means of the laser irradiation it is possible to produce a micro-roughness and/or a chemical modification of the surface which permits good adhesion of the metallization, and it is possible to reduce or eliminate areas of unevenness or waviness of that part (5; 6) of the surface of the electroceramic body (2) which is to be metallized. In addition, improved transverse conductivity can be produced, by virtue of which a low contact resistance and a very homogeneous current distribution is achieved, in particular near to the metallization (3; 4). In addition it is possible to remove residues which originate in particular from a sinter support or from the application of a passivation layer.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: January 15, 2008
    Assignee: ABB Research Ltd
    Inventors: Reto Kessler, Felix Greuter, Michael Hagemeister
  • Publication number: 20050218380
    Abstract: The invention relates to a nonlinear electrical material with improved microvaristor filler (1?), to devices and electrical apparatuses comprising such nonlinear electrical material and to a production method thereof. According to invention, the filler (1?) comprises larger spherical particles (5) and smaller irregular particles (6) that are arranged interstitially and provide non-point-like and/or multiple contact areas (56, 56a, 56b, 66) owing to their irregular outer shape comprising edges and faces. Embodiments, among other things, relate to: spherical particles (5) being calcinated and broken-up to retain their original shape; irregular, spikly shaped, particles (6) obtained by calcinating or sintering and crushing or fracturing granules or blocks; and addition of a third filler fraction.
    Type: Application
    Filed: March 23, 2005
    Publication date: October 6, 2005
    Applicant: ABB Research Ltd.
    Inventors: Hansjoerg Gramespacher, Michael Hagemeister, Petra Kluge-Weiss, Felix Greuter, Lise Donzel, Reto Kessler
  • Publication number: 20050016969
    Abstract: The manufacturing method for an electroceramic component (1), for example a varistor (1), comprises a laser irradiation of a part (5; 6) of the surface of an electroceramic body (2) before a metallization (3; 4) is applied to the part (5; 6) of the surface. By means of the laser irradiation it is possible to produce a micro-roughness and/or a chemical modification of the surface which permits good adhesion of the metallization, and it is possible to reduce or eliminate areas of unevenness or waviness of that part (5; 6) of the surface of the electroceramic body (2) which is to be metallized. In addition, improved transverse conductivity can be produced, by virtue of which a low contact resistance and a very homogeneous current distribution is achieved, in particular near to the metallization (3; 4). In addition it is possible to remove residues which originate in particular from a sinter support or from the application of a passivation layer.
    Type: Application
    Filed: July 8, 2004
    Publication date: January 27, 2005
    Applicant: ABB Research Ltd
    Inventors: Reto Kessler, Felix Greuter, Michael Hagemeister
  • Publication number: 20030010960
    Abstract: The polymer compound contains a polymer matrix and a filler embedded in the matrix. The filler comprises two filler components with nonlinear current-voltage characteristics deviating from one another. By selection of suitable amounts of these filler components, a polymer compound with a predetermined nonlinear current-voltage characteristic deviating from these two characteristics can be formed in this way.
    Type: Application
    Filed: June 27, 2002
    Publication date: January 16, 2003
    Inventors: Felix Greuter, Yvo Dirix, Petra Kluge-Weiss, Walter Schmidt, Reto Kessler