Patents by Inventor Reuben P. Nelson

Reuben P. Nelson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230308104
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Application
    Filed: May 31, 2023
    Publication date: September 28, 2023
    Inventor: Reuben P. Nelson
  • Patent number: 11705914
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: July 18, 2023
    Assignee: Analog Devices, Inc.
    Inventor: Reuben P. Nelson
  • Publication number: 20220173742
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Application
    Filed: November 9, 2021
    Publication date: June 2, 2022
    Inventor: Reuben P. Nelson
  • Patent number: 11177816
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Grant
    Filed: October 19, 2020
    Date of Patent: November 16, 2021
    Assignee: Analog Devices, Inc.
    Inventors: Neil E. Weeks, Reuben P. Nelson
  • Patent number: 11038511
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: June 15, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventors: Neil E. Weeks, Reuben P. Nelson
  • Publication number: 20210036706
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Application
    Filed: October 19, 2020
    Publication date: February 4, 2021
    Inventors: Neil E. Weeks, Reuben P. Nelson
  • Patent number: 10848161
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: November 24, 2020
    Assignee: Analog Devices, Inc.
    Inventor: Reuben P. Nelson
  • Patent number: 10749717
    Abstract: A demodulator for pulse-width modulated clock signals is disclosed. In one aspect, the demodulator includes an edge detector configured to detect transitions in a reference clock and output a signal indicative of timing of the detected transitions. The demodulator may also include a modulation detection circuit configured to identify modulation events of at least one pulse-width modulated pulse in the reference clock based on the signal output from the edge detector and output a signal indicative of the at least one pulse-width modulated pulse modulation event being identified. The demodulator may further include a retiming circuit configured to generate an output clock synchronized with the at least one pulse-width modulated pulse modulation event based on the signal output from the modulation detection circuit.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: August 18, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Oscar Sebastian Burbano, Reuben P. Nelson
  • Patent number: 10749534
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: August 18, 2020
    Assignee: Analog Devices, Inc.
    Inventor: Reuben P. Nelson
  • Patent number: 10749535
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: August 18, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Reuben P. Nelson, Neil E. Weeks
  • Patent number: 10623006
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: April 14, 2020
    Assignee: Analog Devices, Inc.
    Inventor: Reuben P. Nelson
  • Publication number: 20200076439
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Inventors: Neil E. Weeks, Reuben P. Nelson
  • Publication number: 20190007052
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Application
    Filed: June 19, 2018
    Publication date: January 3, 2019
    Inventor: Reuben P. Nelson
  • Publication number: 20190007055
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Application
    Filed: June 19, 2018
    Publication date: January 3, 2019
    Inventor: Reuben P. Nelson
  • Publication number: 20190004565
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Application
    Filed: June 19, 2018
    Publication date: January 3, 2019
    Inventor: Reuben P. Nelson
  • Publication number: 20190004563
    Abstract: Apparatus and methods for clock synchronization and frequency translation are provided herein. Clock synchronization and frequency translation integrated circuits (ICs) generate one or more output clock signals having a controlled timing relationship with respect to one or more reference signals. The teachings herein provide a number of improvements to clock synchronization and frequency translation ICs, including, but not limited to, reduction of system clock error, reduced variation in clock propagation delay, lower latency monitoring of reference signals, precision timing distribution and recovery, extrapolation of timing events for enhanced phase-locked loop (PLL) update rate, fast PLL locking, improved reference signal phase shift detection, enhanced phase offset detection between reference signals, and/or alignment to phase information lost in decimation.
    Type: Application
    Filed: June 19, 2018
    Publication date: January 3, 2019
    Inventors: Reuben P. Nelson, Neil E. Weeks
  • Publication number: 20190007243
    Abstract: A demodulator for pulse-width modulated clock signals is disclosed. In one aspect, the demodulator includes an edge detector configured to detect transitions in a reference clock and output a signal indicative of timing of the detected transitions. The demodulator may also include a modulation detection circuit configured to identify modulation events of at least one pulse-width modulated pulse in the reference clock based on the signal output from the edge detector and output a signal indicative of the at least one pulse-width modulated pulse modulation event being identified. The demodulator may further include a retiming circuit configured to generate an output clock synchronized with the at least one pulse-width modulated pulse modulation event based on the signal output from the modulation detection circuit.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 3, 2019
    Inventors: Oscar Sebastian Burbano, Reuben P. Nelson
  • Patent number: 9735787
    Abstract: An agile frequency synthesizer with dynamic phase and pulse-width control is disclosed. In one aspect, the frequency synthesizer includes a count circuit configured to modify a stored count value by an adjustment value. The frequency synthesizer also includes an output clock generator configured to generate an output clock signal having rising and falling edges that are based at least in part on the stored count value satisfying a count threshold. The count circuit is further configured to alter at least one of the period or phase of the output clock signal based at least in part on modifying an adjustment rate of the count circuit.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: August 15, 2017
    Assignee: Analog Devices, Inc.
    Inventors: Oscar Sebastian Burbano, Matthew D. McShea, Peter Derounian, Reuben P. Nelson, Ziwei Zheng, Brad P. Jeffries
  • Publication number: 20160277030
    Abstract: An agile frequency synthesizer with dynamic phase and pulse-width control is disclosed. In one aspect, the frequency synthesizer includes a count circuit configured to modify a stored count value by an adjustment value. The frequency synthesizer also includes an output clock generator configured to generate an output clock signal having rising and falling edges that are based at least in part on the stored count value satisfying a count threshold. The count circuit is further configured to alter at least one of the period or phase of the output clock signal based at least in part on modifying an adjustment rate of the count circuit.
    Type: Application
    Filed: June 17, 2015
    Publication date: September 22, 2016
    Inventors: Oscar Sebastian Burbano, Matthew D. McShea, Peter Derounian, Reuben P. Nelson, Ziwei Zheng, Brad P. Jeffries
  • Patent number: 8957700
    Abstract: Apparatus and method for digital configuration of integrated circuits (ICs) are provided herein. In certain implementations, an IC includes an impedance sensing circuit and at least one pin used for digital configuration. The impedance sensing circuit can detect an impedance value of an external passive network electrically connected to the pin, and can digitally configure the IC based on the detected impedance. For example, an end-user can connect an external resistor of a particular resistance to the pin, and the impedance sensing circuit can sense or detect the external resistor's resistance and digitally configure the IC based on the detected resistance. Accordingly, an end-user can digitally configure the IC by connecting a passive external component corresponding to a desired digital configuration to the pin. In certain implementations, the IC includes multiple pins, and the digital configuration is based on the impedances detected on each of the pins.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 17, 2015
    Assignee: Analog Devices, Inc.
    Inventor: Reuben P. Nelson