Patents by Inventor Reuble Mathew

Reuble Mathew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240294372
    Abstract: A MEMS resonator device includes: (i) a support structure, (ii) a resonator element doped with at least one of N-type or P-type dopants, wherein a doping concentration of the at least one of N-type or P-type dopants causes a closely temperature-compensated mode in which (a) an absolute value of a first order temperature coefficient of frequency of the resonator element is reduced to a first value below a threshold value and (b) an absolute value of a second order temperature coefficient of frequency of the resonator element is reduced to about zero, and wherein an anchor decoupler region formed on the resonator element causes the absolute value to be further reduced to a second value, and (iii) at least one anchor coupling the resonator element to the support structure, wherein the anchor decoupler region is formed on the resonator element at least partially surrounding the at least one anchor.
    Type: Application
    Filed: April 26, 2024
    Publication date: September 5, 2024
    Inventors: Anosh Daruwalla, Reuble Mathew
  • Patent number: 12020116
    Abstract: Devices, systems, and methods that include a qubit coupled to a projective-source digital-to-analog converter (PSDAC) for projective measurement of the qubit. A change in flux state of the PSDAC from a first flux state to a second flux state generates a fast-flux step or fast-step waveform that can be applied to the qubit to perform projective measurement of the qubit. For a quantum processor that includes a set of qubits wherein each qubit is coupled to a respective PSDAC, a shared trigger line can activate each PSDAC to generate a respective fast-flux step or fast-step waveform. Synchronization devices can synchronize the fast-flux steps or fast-step waveforms, allowing for projective readout of the set of qubits.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: June 25, 2024
    Assignee: 1372934 B.C. LTD.
    Inventors: Emile M. Hoskinson, Reuble Mathew
  • Publication number: 20230131902
    Abstract: An example silicon MEMS resonator device includes a support structure, a resonator element with at least one associated eigenmode of vibration, at least one anchor coupling the resonator element to the support structure, at least one driving electrode, and at least one sense electrode. The resonator element is homogeneously doped with N-type or P-type dopants to a doping concentration that causes a closely temperature-compensated mode in which (i) an absolute value of a first order temperature coefficient of frequency of the resonator element is reduced to a first value below a threshold value and (ii) an absolute value of a second order temperature coefficient of frequency of the resonator element is reduced to about zero. Further, a geometry of the resonator element is chosen such that the absolute value of the first order temperature coefficient of frequency is further reduced to a second value smaller than the first value.
    Type: Application
    Filed: October 26, 2022
    Publication date: April 27, 2023
    Inventors: Anosh Daruwalla, Reuble Mathew
  • Publication number: 20210248506
    Abstract: Devices, systems, and methods that include a qubit coupled to a projective-source digital-to-analog converter (PSDAC) for projective measurement of the qubit. A change in flux state of the PSDAC from a first flux state to a second flux state generates a fast-flux step or fast-step waveform that can be applied to the qubit to perform projective measurement of the qubit. For a quantum processor that includes a set of qubits wherein each qubit is coupled to a respective PSDAC, a shared trigger line can activate each PSDAC to generate a respective fast-flux step or fast-step waveform. Synchronization devices can synchronize the fast-flux steps or fast-step waveforms, allowing for projective readout of the set of qubits.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 12, 2021
    Inventors: Emile M. Hoskinson, Reuble Mathew