Patents by Inventor Rex Tarpey

Rex Tarpey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030148412
    Abstract: The present inventors have discovered that histidinol-phosphatase is essential for fungal pathogenicity. Specifically, the inhibition of histidinol-phosphatase gene expression in fungi results in small, non-sporulating lesions and reduced pathogenicity. Thus, histidinol-phosphatase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit histidinol-phosphatase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
    Type: Application
    Filed: December 6, 2001
    Publication date: August 7, 2003
    Inventors: Kiichi Adachi, Todd DeZwaan, Sze-Chung Lo, Maria Victoria Montenegro-Chamorro, Sheryl Frank, Blaise Darveaux, Sanjoy Mahanty, Ryan Heiniger, Amy Skalchunes, Huaqin Pan, Rex Tarpey, Jeffrey Shuster, Matthew M. Tanzer, Lisbeth Hamer
  • Publication number: 20030143657
    Abstract: The present inventors have discovered that 3-Isopropylmalate dehydratase is essential for fungal pathogenicity. Specifically, the inhibition of 3-Isopropylmalate dehydratase gene expression in fungi results in no signs of successful infection or lesions. Thus, 3-Isopropylmalate dehydratase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit 3-Isopropylmalate dehydratase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
    Type: Application
    Filed: December 6, 2001
    Publication date: July 31, 2003
    Inventors: Lisbeth Hamer, Kiichi Adachi, Todd DeZwaan, Sze-Chung Lo, Maria Victoria Montenegro-Chamorro, Sheryl Frank, Blaise Darveaux, Sanjoy Mahanty, Ryan Heiniger, Amy Skalchunes, Huaqin Pan, Rex Tarpey, Jeffrey Shuster, Matthew M. Tanzer
  • Publication number: 20030124642
    Abstract: The present inventors have discovered that 5-Aminolevulinate synthase is essential for fungal pathogenicity. Specifically, the inhibition of 5-Aminolevulinate synthase gene expression in fungi results in no signs of successful infection or lesions. Thus, 5-Aminolevulinate synthase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit 5-Aminolevulinate synthase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
    Type: Application
    Filed: December 6, 2001
    Publication date: July 3, 2003
    Inventors: Todd DeZwaan, Sze-Chung Lo, Maria Victoria Montenegro-Chamarro, Sheryl Frank, Blaise Darveaux, Sanjoy K. Mahanty, Ryan Heiniger, Amy Skalchunes, Huaqin Pan, Rex Tarpey, Jeffrey Shuster, Matthew M. Tanzer, Lisbeth Hamer, Kiichi Adachi
  • Publication number: 20030108979
    Abstract: The present inventors have discovered that Threonine synthase is essential for fungal pathogenicity. Specifically, the inhibition of Threonine synthase gene expression in fungi results in no signs of successful infection or lesions. Thus, Threonine synthase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit Threonine synthase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
    Type: Application
    Filed: December 7, 2001
    Publication date: June 12, 2003
    Inventors: Maria Victoria Montenegro-Chamorro, Sheryl Frank, Blaise Darveaux, Sanjoy Mahanty, Ryan Heiniger, Amy Skalchunes, Huaqin Pan, Rex Tarpey, Jeffrey Shuster, Matthew M. Tanzer, Lisbeth Hamer, Kiichi Adachi, Todd DeZwaan, Sze-Chung Lo
  • Publication number: 20030104511
    Abstract: The present inventors have discovered that &agr;-Aminoadipate Reductase is essential for fungal pathogenicity. Specifically, the inhibition of &agr;-Aminoadipate Reductase gene expression in fungi results in no signs of successful infection or lesions. Thus, &agr;-Aminoadipate Reductase can be used as a target for the identification of antibiotics, preferably antifungals. Accordingly, the present invention provides methods for the identification of compounds that inhibit &agr;-Aminoadipate Reductase expression or activity. The methods of the invention are useful for the identification of antibiotics, preferably antifungals.
    Type: Application
    Filed: November 9, 2001
    Publication date: June 5, 2003
    Inventors: Matthew M. Tanzer, Jeffrey Shuster, Lisbeth Hamer, Kiichi Adachi, Todd M. DeZwaan, Sze-Chung (clive) Lo, Maria Victoria Montenegro-Chamorro, Sheryl Frank, Blaise Darveaux, Sanjoy K. Mahanty, Ryan Heiniger, Amy Skalchunes, Huaqin Pan, Rex Tarpey