Patents by Inventor Reyna HERNANDEZ-BENITEZ

Reyna HERNANDEZ-BENITEZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959094
    Abstract: Disclosed herein are homology-independent targeted integration methods of integrating an exogenous DNA sequence into a genome of a non-dividing cell and compositions for such methods. Methods herein comprise contacting the non-dividing cell with a composition comprising a targeting construct comprising the exogenous DNA sequence and a targeting sequence, a complementary strand oligonucleotide homologous to the targeting sequence, and a nuclease, thereby altering the genome of the non-dividing cell.
    Type: Grant
    Filed: May 2, 2023
    Date of Patent: April 16, 2024
    Assignee: Salk Institute for Biological Studies
    Inventors: Juan Carlos Izpisua Belmonte, Keiichiro Suzuki, Reyna Hernandez-Benitez, Jun Wu, Yuji Tsunekawa
  • Publication number: 20230399663
    Abstract: Disclosed herein are homology-independent targeted integration methods of integrating an exogenous DNA sequence into a genome of a non-dividing cell and compositions for such methods. Methods herein comprise contacting the non-dividing cell with a composition comprising a targeting construct comprising the exogenous DNA sequence and a targeting sequence, a complementary strand oligonucleotide homologous to the targeting sequence, and a nuclease, thereby altering the genome of the non-dividing cell.
    Type: Application
    Filed: May 2, 2023
    Publication date: December 14, 2023
    Applicant: Salk Institute for Biological Studies
    Inventors: Juan Carlos Izpisua Belmonte, Keiichiro Suzuki, Reyna Hernandez-Benitez, Jun Wu, Yuji Tsunekawa
  • Publication number: 20230220354
    Abstract: Compositions and methods modulating the steady state of cells are provided. The compositions include metabolites (C1 metabolites and C1 metabolite cocktails (C1-MIM) for use in inducing cells into a different state from their steady state, for example, into a less differentiated state, when compared to their original state before treatment. The C1 metabolites include methionine, SAM (S-adenosyl methionine), threonine, glycine, putrescine, and cysteine. The metabolites are used to supplement cell culture media, and accordingly, cells culture media supplemented with the disclosed metabolites (MIM supplemented media) are also provided. The method includes: contacting a cell with the C1 metabolites for a sufficient period of time to result in reprograming the cell into a different state from their steady, for example, into a less differentiated state having progenitor-like characteristics (MIM-Cells).
    Type: Application
    Filed: March 30, 2021
    Publication date: July 13, 2023
    Inventors: Pierre Julius Magistretti, Juan Carlos Izpisua Belmonte, Reyna Hernandez Benitez
  • Patent number: 11674158
    Abstract: Disclosed herein are homology-independent targeted integration methods of integrating an exogenous DNA sequence into a genome of a non-dividing cell and compositions for such methods. Methods herein comprise contacting the non-dividing cell with a composition comprising a targeting construct comprising the exogenous DNA sequence and a targeting sequence, a complementary strand oligonucleotide homologous to the targeting sequence, and a nuclease, thereby altering the genome of the non-dividing cell.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: June 13, 2023
    Assignee: Salk Institute for Biological Studies
    Inventors: Juan Carlos Izpisua Belmonte, Keiichiro Suzuki, Reyna Hernandez-Benitez, Jun Wu, Yuji Tsunekawa
  • Publication number: 20220333106
    Abstract: Provided herein are methods and compositions for editing a target genome in a cell comprising contacting the cell with (i) a single homology arm construct comprising a replacement sequence and a targeted endonuclease cleavage site; and (ii) a targeted endonuclease, wherein the replacement sequence comprises at least one nucleotide difference compared to the target genome and wherein the target genome comprises a sequence homologous to the targeted endonuclease cleavage site.
    Type: Application
    Filed: September 20, 2019
    Publication date: October 20, 2022
    Applicant: Salk Institute for Biological Studies
    Inventors: Juan Carlos Izpisua Belmonte, Keiichiro Suzuki, Mako Tsuji, Reyna Hernandez-Benitez
  • Publication number: 20190225991
    Abstract: Disclosed herein are homology-independent targeted integration methods of integrating an exogenous DNA sequence into a genome of a non-dividing cell and compositions for such methods. Methods herein comprise contacting the non-dividing cell with a composition comprising a targeting construct comprising the exogenous DNA sequence and a targeting sequence, a complementary strand oligonucleotide homologous to the targeting sequence, and a nuclease, thereby altering the genome of the non-dividing cell.
    Type: Application
    Filed: July 14, 2017
    Publication date: July 25, 2019
    Inventors: Juan Carlos IZPISUA BELMONTE, Keiichiro SUZUKI, Reyna HERNANDEZ-BENITEZ, Jun WU, Yuji TSUNEKAWA