Patents by Inventor Reza Oboodi
Reza Oboodi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12042839Abstract: Ionic liquid bath plating methods for depositing aluminum-containing layers utilizing shaped consumable aluminum anodes are provided, as are turbomachine components having three dimensionally-tailored, aluminum-containing coatings produced from such aluminum-containing layers. In one embodiment, the ionic liquid bath plating method includes the step or process of obtaining a consumable aluminum anode including a workpiece-facing anode surface substantially conforming with the geometry of the non-planar workpiece surface. The workpiece-facing anode surface and the non-planar workpiece surface are positioned in an adjacent, non-contacting relationship, while the workpiece and the consumable aluminum anode are submerged in an ionic liquid aluminum plating bath. An electrical potential is then applied across the consumable aluminum anode and the workpiece to deposit an aluminum-containing layer onto the non-planar workpiece surface.Type: GrantFiled: August 1, 2019Date of Patent: July 23, 2024Assignee: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, James Piascik, Lee Poandl, Harry Lester Kington
-
Patent number: 11827574Abstract: A method of pressure sintering an environmental barrier coating on a surface of a ceramic substrate to form an article is provided. The method includes the steps of etching the surface of the ceramic substrate to texture the surface, disposing an environmental barrier coating on the etched surface of the ceramic substrate. The environmental barrier coating includes a rare earth silicate, and pressure sintering the environmental barrier coating on the etched surface of the ceramic substrate in an inert or nitrogen atmosphere such that at least a portion of the environmental barrier coating is disposed in the texture of the surface of the ceramic substrate thereby forming the article.Type: GrantFiled: August 9, 2021Date of Patent: November 28, 2023Assignee: HONEYWELL INTERNATIONAL INC.Inventors: Donald Martin Olson, Reza Oboodi, James Piascik, Terence Whalen, Bahram Jadidian
-
Patent number: 11623896Abstract: Methods for fabricating protective coating systems for gas turbine engine applications are provided. An exemplary method of applying a protective coating to a substrate includes the steps of providing a substrate formed of a ceramic matrix composite material, forming a first coating layer directly on to the substrate and comprising an oxygen barrier material, a compliance material, or a bonding material and forming a second coating layer directly on to the first coating layer and comprising a thermal barrier material. The method optionally includes forming a third coating layer partially directly on to the second coating layer and partially within at least some of the plurality of pores of the second coating layer.Type: GrantFiled: August 6, 2018Date of Patent: April 11, 2023Assignee: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, Eric Passman, Bahram Jadidian
-
Patent number: 11370717Abstract: A protective coating system includes a substrate that has an exterior surface exhibiting a degree of valley/hill surface irregularity including a plurality of hills and a plurality of valleys and a first coating layer formed directly on to the exterior surface of the substrate and that conforms to the exterior surface of the substrate such that the first coating layer has a non-uniform coating thickness over the substrate. The protective coating system further includes a second coating layer formed directly on to the exterior surface of the first coating layer. The second coating layer includes a plurality of pores within the second coating layer. Still further, the protective coating system includes a third coating layer formed within at least some of the plurality of pores within the second coating layer.Type: GrantFiled: March 6, 2020Date of Patent: June 28, 2022Assignee: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, Eric Passman, Bahram Jadidian
-
Publication number: 20220098122Abstract: This disclosure provides a method of pressure sintering an environmental barrier coating on a surface of a ceramic substrate to form an article. The method includes the steps of etching the surface of the ceramic substrate to texture the surface, disposing an environmental barrier coating on the etched surface of the ceramic substrate wherein the environmental barrier coating includes a rare earth silicate, and pressure sintering the environmental barrier coating on the etched surface of the ceramic substrate in an inert or nitrogen atmosphere at a pressure of greater than atmospheric pressure such that at least a portion of the environmental barrier coating is disposed in the texture of the surface of the ceramic substrate thereby forming the article.Type: ApplicationFiled: August 9, 2021Publication date: March 31, 2022Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Donald Martin Olson, Reza Oboodi, James Piascik, Terence Whalen, Bahram Jadidian
-
Patent number: 11236023Abstract: A method for forming a protective coating on a surface of a ceramic substrate includes combining a rare-earth oxide, alumina, and silica to form a powder, etching the surface of the ceramic substrate, applying the powder on the etched surface in an amount of from about 0.001 to about 0.1 g/cm2 to reduce capture of bubbles from off-gassing of the ceramic substrate, heating the powder for a time of from about 5 to about 60 minutes to a temperature at or above the melting point such that the powder melts and forms a molten coating on the surface that has a minimized number of bubbles, and cooling the molten coating to ambient temperature to form the protective coating disposed on and in direct contact with the surface of the ceramic substrate such that the protective coating has a thickness of less than about 1 mil.Type: GrantFiled: November 7, 2018Date of Patent: February 1, 2022Assignee: HONEYWELL INTERNATIONAL INC.Inventors: Terence Whalen, Bahram Jadidian, Reza Oboodi
-
Patent number: 11131026Abstract: Methods for forming sintered-bonded high temperature coatings over ceramic turbomachine components are provided, as are ceramic turbomachine components having such high temperature coatings formed thereover. In one embodiment, the method includes the step or process of removing a surface oxide layer from the ceramic component body of a turbomachine component to expose a treated surface of the ceramic component body. A first layer of coating precursor material, which has a solids content composed predominately of at least one rare earth silicate by weight percentage, is applied to the treated surface. The first layer of the coating precursor material is then heat treated to sinter the solids content and form a first sintered coating layer bonded to the treated surface. The steps of applying and sintering the coating precursor may be repeated, as desired, to build a sintered coating body to a desired thickness over the ceramic component body.Type: GrantFiled: August 10, 2020Date of Patent: September 28, 2021Assignee: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, James Piascik, Donald M. Olson, Natalie Kruk, Terence Whalen
-
Patent number: 11084761Abstract: A method of pressure sintering an environmental barrier coating on a surface of a ceramic substrate to form an article includes the steps of etching the surface of the ceramic substrate to texture the surface, disposing an environmental barrier coating on the etched surface of the ceramic substrate wherein the environmental barrier coating includes a rare earth silicate, and pressure sintering the environmental barrier coating on the etched surface of the ceramic substrate in an inert or nitrogen atmosphere at a pressure of greater than atmospheric pressure such that at least a portion of the environmental barrier coating is disposed in the texture of the surface of the ceramic substrate thereby forming the article.Type: GrantFiled: September 14, 2018Date of Patent: August 10, 2021Assignee: HONEYWELL INTERNATIONAL INC.Inventors: Donald Martin Olson, Reza Oboodi, James Piascik, Terence Whalen, Bahram Jadidian
-
Publication number: 20210180190Abstract: A coated turbomachine component includes a ceramic component body having a principal surface. The component includes a high temperature coating. The high temperature coating includes a sintered coating body bonded directly to and intimately contacting the principal surface of the ceramic component body. The sintered coating body has a minimum porosity adjacent the principal surface and a maximum porosity at a location further from the principal surface, as taken along an axis orthogonal to the principal surface.Type: ApplicationFiled: December 3, 2019Publication date: June 17, 2021Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, James Piascik, Donald M. Olson, Natalie Kruk, Terence Whalen
-
Patent number: 10958115Abstract: Embodiments of laminated stator cores suitable for usage in high temperature applications are provided, as are embodiments of methods for manufacturing high temperature laminated stator core. In one embodiment, the method includes obtaining a plurality of coated laminates each comprising a laminate over which a coating precursor layer is formed. The coating precursor layer contain inorganic dielectric particles having a softening point. The plurality of coated laminates are arranged in a laminate stack, which is then fired at temperatures equal to or greater than the softening point of the inorganic dielectric particles. During firing, a compressive force is applied to the laminate stack sufficient to consolidate the inorganic dielectric particles into a plurality of coherent interlaminate dielectric layers electrically insulating and bonding together the plurality of coated laminates as the high temperature laminated stator core.Type: GrantFiled: September 4, 2018Date of Patent: March 23, 2021Assignee: HONEYWELL INTERNATIONAL INC.Inventors: James Piascik, Reza Oboodi, Paul Chipko, Martin Carlin Baker, Jimmy Wiggins, Leroy Allen Fizer
-
Publication number: 20200370182Abstract: Methods for forming sintered-bonded high temperature coatings over ceramic turbomachine components are provided, as are ceramic turbomachine components having such high temperature coatings formed thereover. In one embodiment, the method includes the step or process of removing a surface oxide layer from the ceramic component body of a turbomachine component to expose a treated surface of the ceramic component body. A first layer of coating precursor material, which has a solids content composed predominately of at least one rare earth silicate by weight percentage, is applied to the treated surface. The first layer of the coating precursor material is then heat treated to sinter the solids content and form a first sintered coating layer bonded to the treated surface. The steps of applying and sintering the coating precursor may be repeated, as desired, to build a sintered coating body to a desired thickness over the ceramic component body.Type: ApplicationFiled: August 10, 2020Publication date: November 26, 2020Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, James Piascik, Donald M. Olson, Natalie Kruk, Terence Whalen
-
Patent number: 10801111Abstract: Methods for forming sintered-bonded high temperature coatings over ceramic turbomachine components are provided, as are ceramic turbomachine components having such high temperature coatings formed thereover. In one embodiment, the method includes the step or process of removing a surface oxide layer from the ceramic component body of a turbomachine component to expose a treated surface of the ceramic component body. A first layer of coating precursor material, which has a solids content composed predominately of at least one rare earth silicate by weight percentage, is applied to the treated surface. The first layer of the coating precursor material is then heat treated to sinter the solids content and form a first sintered coating layer bonded to the treated surface. The steps of applying and sintering the coating precursor may be repeated, as desired, to build a sintered coating body to a desired thickness over the ceramic component body.Type: GrantFiled: May 30, 2017Date of Patent: October 13, 2020Assignee: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, James Piascik, Donald M. Olson, Natalie Kruk, Terence Whalen
-
Publication number: 20200207672Abstract: A protective coating system includes a substrate that has an exterior surface exhibiting a degree of valley/hill surface irregularity including a plurality of hills and a plurality of valleys and a first coating layer formed directly on to the exterior surface of the substrate and that conforms to the exterior surface of the substrate such that the first coating layer has a non-uniform coating thickness over the substrate. The protective coating system further includes a second coating layer formed directly on to the exterior surface of the first coating layer. The second coating layer includes a plurality of pores within the second coating layer. Still further, the protective coating system includes a third coating layer formed within at least some of the plurality of pores within the second coating layer.Type: ApplicationFiled: March 6, 2020Publication date: July 2, 2020Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, Eric Passman, Bahram Jadidian
-
Patent number: 10676403Abstract: Protective coating systems for gas turbine engine applications and methods for fabricating such protective coating systems are provided. An exemplary protective coating system includes a substrate formed of a ceramic matrix composite material, a first coating layer formed directly on to the substrate and comprising an oxygen barrier material, a compliance material, or a bonding material and a second coating layer formed directly on to the first coating layer and comprising a thermal barrier material. The exemplary protective coating optionally includes a third coating layer partially formed directly on to the second coating layer and partially formed within at least some of the plurality of pores of the second coating layer.Type: GrantFiled: January 16, 2014Date of Patent: June 9, 2020Assignee: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, Eric Passman, Bahram Jadidian
-
Publication number: 20200140345Abstract: A method for forming a protective coating on a surface of a ceramic substrate includes combining a rare-earth oxide, alumina, and silica to form a powder, etching the surface of the ceramic substrate, applying the powder on the etched surface in an amount of from about 0.001 to about 0.1 g/cm2 to reduce capture of bubbles from off-gassing of the ceramic substrate, heating the powder for a time of from about 5 to about 60 minutes to a temperature at or above the melting point such that the powder melts and forms a molten coating on the surface that has a minimized number of bubbles, and cooling the molten coating to ambient temperature to form the protective coating disposed on and in direct contact with the surface of the ceramic substrate such that the protective coating has a thickness of less than about 1 mil.Type: ApplicationFiled: November 7, 2018Publication date: May 7, 2020Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Terence Whalen, Bahram Jadidian, Reza Oboodi
-
Publication number: 20200087220Abstract: This disclosure provides a method of pressure sintering an environmental barrier coating on a surface of a ceramic substrate to form an article. The method includes the steps of etching the surface of the ceramic substrate to texture the surface, disposing an environmental barrier coating on the etched surface of the ceramic substrate wherein the environmental barrier coating includes a rare earth silicate, and pressure sintering the environmental barrier coating on the etched surface of the ceramic substrate in an inert or nitrogen atmosphere at a pressure of greater than atmospheric pressure such that at least a portion of the environmental barrier coating is disposed in the texture of the surface of the ceramic substrate thereby forming the article.Type: ApplicationFiled: September 14, 2018Publication date: March 19, 2020Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Donald Martin Olson, Reza Oboodi, James Piascik, Terence Whalen, Bahram Jadidian
-
Publication number: 20190353041Abstract: Ionic liquid bath plating methods for depositing aluminum-containing layers utilizing shaped consumable aluminum anodes are provided, as are turbomachine components having three dimensionally-tailored, aluminum-containing coatings produced from such aluminum-containing layers. In one embodiment, the ionic liquid bath plating method includes the step or process of obtaining a consumable aluminum anode including a workpiece-facing anode surface substantially conforming with the geometry of the non-planar workpiece surface. The workpiece-facing anode surface and the non-planar workpiece surface are positioned in an adjacent, non-contacting relationship, while the workpiece and the consumable aluminum anode are submerged in an ionic liquid aluminum plating bath. An electrical potential is then applied across the consumable aluminum anode and the workpiece to deposit an aluminum-containing layer onto the non-planar workpiece surface.Type: ApplicationFiled: August 1, 2019Publication date: November 21, 2019Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, James Piascik, Lee Poandl, Harry Lester Kington
-
Patent number: 10392948Abstract: Ionic liquid bath plating methods for depositing aluminum-containing layers utilizing shaped consumable aluminum anodes are provided, as are turbomachine components having three dimensionally-tailored, aluminum-containing coatings produced from such aluminum-containing layers. In one embodiment, the ionic liquid bath plating method includes the step or process of obtaining a consumable aluminum anode including a workpiece-facing anode surface substantially conforming with the geometry of the non-planar workpiece surface. The workpiece-facing anode surface and the non-planar workpiece surface are positioned in an adjacent, non-contacting relationship, while the workpiece and the consumable aluminum anode are submerged in an ionic liquid aluminum plating bath. An electrical potential is then applied across the consumable aluminum anode and the workpiece to deposit an aluminum-containing layer onto the non-planar workpiece surface.Type: GrantFiled: April 26, 2016Date of Patent: August 27, 2019Assignee: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, James Piascik, Lee Poandl, Harry Lester Kington
-
Publication number: 20190020229Abstract: Embodiments of laminated stator cores suitable for usage in high temperature applications are provided, as are embodiments of methods for manufacturing high temperature laminated stator core. In one embodiment, the method includes obtaining a plurality of coated laminates each comprising a laminate over which a coating precursor layer is formed. The coating precursor layer contain inorganic dielectric particles having a softening point. The plurality of coated laminates are arranged in a laminate stack, which is then fired at temperatures equal to or greater than the softening point of the inorganic dielectric particles. During firing, a compressive force is applied to the laminate stack sufficient to consolidate the inorganic dielectric particles into a plurality of coherent interlaminate dielectric layers electrically insulating and bonding together the plurality of coated laminates as the high temperature laminated stator core.Type: ApplicationFiled: September 4, 2018Publication date: January 17, 2019Applicant: HONEYWELL INTERNATIONAL INC.Inventors: James Piascik, Reza Oboodi, Paul Chipko, Martin Carlin Baker, Jimmy Wiggins, Leroy Allen Fizer
-
Publication number: 20180346388Abstract: Methods for fabricating protective coating systems for gas turbine engine applications are provided. An exemplary method of applying a protective coating to a substrate includes the steps of providing a substrate formed of a ceramic matrix composite material, forming a first coating layer directly on to the substrate and comprising an oxygen barrier material, a compliance material, or a bonding material and forming a second coating layer directly on to the first coating layer and comprising a thermal barrier material. The method optionally includes forming a third coating layer partially directly on to the second coating layer and partially within at least some of the plurality of pores of the second coating layer.Type: ApplicationFiled: August 6, 2018Publication date: December 6, 2018Applicant: HONEYWELL INTERNATIONAL INC.Inventors: Reza Oboodi, Eric Passman, Bahram Jadidian