Patents by Inventor Rhonda M. Stroud
Rhonda M. Stroud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230332044Abstract: Methods of fabricating nanocrystals are disclosed. Such methods may include providing copper sulfide core nanocrystals and providing a lead precursor. Moreover, the copper sulfide core nanocrystals may be reacted with the lead precursor to generate copper doped lead sulfide nanocrystals. Related nanocrystals and optoelectronic devices are also disclosed.Type: ApplicationFiled: May 4, 2023Publication date: October 19, 2023Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Patrick Y. Yee, Sarah F. Brittman, Paul D. Cunningham, Janice E. Boercker, Katherine D. Burgess, Rhonda M. Stroud, Steven C. Erwin
-
Patent number: 11732186Abstract: A process for synthesizing Cu2-xS/PbS core/shell nanocrystals. Pb-oleate is mixed with 1-octadecene and heated to 60° C. Cu2-xS core solution and bis(trimethylsilyl)sulfide stock solution are added and the mixture is stirred at 60° C. for 6 minutes to form the PbS shell around the Cu2-xS nanocrystal cores. The flask is cooled and acetonitrile and toluene is added and the mixture is centrifuged to precipitate and remove the Cu2-xS/PbS core/shell nanocrystals from the reaction mixture. The reaction also produces homogeneously nucleated PbS nanocrystals, which are removed from the Cu2-xS/PbS core/shell reaction mixture via size-selective precipitation. By tailoring the amounts of Pb-oleate and bis(trimethylsilyl)sulfide stock solution in the reaction vessel, while maintaining their molar ratio of 1.5:1 and the number of Cu2-xS cores in the reaction, Cu2-xS/PbS core/shell nanocrystals having a predetermined shell thickness of PbS, and thus a predetermined level of chemical stability, can be obtained.Type: GrantFiled: April 23, 2021Date of Patent: August 22, 2023Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Janice E. Boercker, Sarah F. Brittman, Joseph G. Tischler, Patrick Y. Yee, Chase T. Ellis, Paul D. Cunningham, Rhonda M. Stroud, Michael H. Stewart, Steven C. Erwin
-
Patent number: 11325086Abstract: A method of making molecularly doped nanodiamond. A versatile method for doping diamond by adding dopants into a carbon precursor and producing diamond at high pressure, high temperature conditions. Molecularly doped nanodiamonds that have direct incorporation of dopants and therefore without the need for ion implantation. Molecularly-doped diamonds that have fewer lattice defects than those made with ion implantation.Type: GrantFiled: March 8, 2019Date of Patent: May 10, 2022Assignee: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Rhonda M. Stroud, Matthew J. Crane, Peter J. Pauzauskie
-
Publication number: 20220048002Abstract: A method of making molecularly doped nanodiamond. A versatile method for doping diamond by adding dopants into a carbon precursor and producing diamond at high pressure, high temperature conditions. Molecularly doped nanodiamonds that have direct incorporation of dopants and therefore without the need for ion implantation. Molecularly-doped diamonds that have fewer lattice defects than those made with ion implantation.Type: ApplicationFiled: October 28, 2021Publication date: February 17, 2022Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Rhonda M. Stroud, Matthew J. Crane, Peter J. Pauzauskie
-
Publication number: 20210332291Abstract: A process for synthesizing Cu2-xS/PbS core/shell nanocrystals. Pb-oleate is mixed with 1-octadecene and heated to 60° C. Cu2-xS core solution and bis(trimethylsilyl)sulfide stock solution are added and the mixture is stirred at 60° C. for 6 minutes to form the PbS shell around the Cu2-xS nanocrystal cores. The flask is cooled and acetonitrile and toluene is added and the mixture is centrifuged to precipitate and remove the Cu2-xS/PbS core/shell nanocrystals from the reaction mixture. The reaction also produces homogeneously nucleated PbS nanocrystals, which are removed from the Cu2-xS/PbS core/shell reaction mixture via size-selective precipitation. By tailoring the amounts of Pb-oleate and bis(trimethylsilyl)sulfide stock solution in the reaction vessel, while maintaining their molar ratio of 1.5:1 and the number of Cu2-xS cores in the reaction, Cu2-xS/PbS core/shell nanocrystals having a predetermined shell thickness of PbS, and thus a predetermined level of chemical stability, can be obtained.Type: ApplicationFiled: April 23, 2021Publication date: October 28, 2021Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Janice E. Boercker, Sarah F. Brittman, Joseph G. Tischler, Patrick Y. Yee, Chase T. Ellis, Paul D. Cunningham, Rhonda M. Stroud, Michael H. Stewart, Steven C. Erwin
-
Publication number: 20190282984Abstract: A method of making molecularly doped nanodiamond. A versatile method for doping diamond by adding dopants into a carbon precursor and producing diamond at high pressure, high temperature conditions. Molecularly doped nanodiamonds that have direct incorporation of dopants and therefore without the need for ion implantation. Molecularly-doped diamonds that have fewer lattice defects than those made with ion implantation.Type: ApplicationFiled: March 8, 2019Publication date: September 19, 2019Applicant: The Government of the United States of America, as represented by the Secretary of the NavyInventors: Rhonda M. Stroud, Matthew J. Crane, Peter J. Pauzauskie
-
Patent number: 7238729Abstract: This disclosure describes the first viable non-enzyme protein encapsulated within an aerogel. In this, a large excess of cyt c is added to a commercial buffered Au sol solution ( ) which results in the formation of a gold˜protein-protein superstructure in the absence of separation techniques which destroy the superstructure. The gold˜protein-protein superstructure is then nanoglued into a silica framework during the sol to gel transition. To form the gel, the Au˜cyt. c superstructure in buffered medium is added to a silica sol and the composite gels are washed with acetone followed by liquid carbon dioxide and then supercritically dried to form the aerogel. The biocomposite aerogels have a multiplicity of applications particularly in the realm of sensing and energy transformation.Type: GrantFiled: August 18, 2004Date of Patent: July 3, 2007Assignee: The United States of America as Represented by the Secretary of the NavyInventors: Debra R. Rolison, Jean M. Wallace, Jeremy J. Pietron, Jane K. Rice, Rhonda M. Stroud
-
Patent number: 6824776Abstract: This disclosure describes the first viable non-enzyme protein encapsulated within an aerogel. In this, a large excess of cyt. c is added to a commercial buffered Au sot solution ( ) which results in the formation of a gold˜protein-protein superstructure in the absence of separation techniques which destroy the superstructure. The gold˜protein-protein superstructure is then nanoglued into a silica framework during the sol to gel transition. To form the gel, the Au-cyt. c superstructure in buffered medium is added to a silica sol and the composite gels are washed with acetone followed by liquid carbon dioxide and then supercritically dried to form the aerogel. The biocomposite aerogels have a multiplicity of applications particularly in the realm of sensing and energy transformation.Type: GrantFiled: April 16, 2003Date of Patent: November 30, 2004Assignee: The United States of America as represented by the Secretary of the NavyInventors: Debra R. Rolison, Jean M. Wallace, Jeremy J. Pietron, Jane K. Rice, Rhonda M. Stroud
-
Publication number: 20040209338Abstract: This disclosure describes the first viable non-enzyme protein encapsulated within an aerogel. In this, a large excess of cyt. c is added to a commercial buffered Au sol solution ( ) which results in the formation of a gold˜protein-protein superstructure in the absence of separation techniques which destroy the superstructure.Type: ApplicationFiled: April 16, 2003Publication date: October 21, 2004Inventors: Debra R. Rolison, Jean M. Wallace, Jeremy J. Pietron, Jane K. Rice, Rhonda M. Stroud
-
Patent number: 6695986Abstract: An electrically conductive composite is provided having a mesoporous architecture that improves the accessibility of a nanoscopic catalyst, supported on conductive carbon, to a mass-transported reactant, or substrate, thereby leading to enhanced catalytic activity. In particular, the composite is useful for a new class of fuel-cell electrode architectures based on a composite aerogel that improves the accessibility of a carbon-supported Pt electrocatalyst to methanol (MeOH), leading to higher MeOH oxidation activities than observed at the native carbon supported Pt electrocatalyst. The composite comprises a nanoscopic Pt electrocatalyst, a carbon black electron-conducting support, and a silica aerogel.Type: GrantFiled: September 25, 2002Date of Patent: February 24, 2004Assignee: The United States of America as represented by the Secretary of the NavyInventors: Debra R. Rolison, Michele L. Anderson, Rhonda M. Stroud