Patents by Inventor Ric Fulop

Ric Fulop has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170252851
    Abstract: A class of metallic composites is described with advantageous bulk properties for additive fabrication. In particular, the composites described herein can be used in fused filament fabrication or any other extrusion or deposition-based three-dimensional printing process.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 7, 2017
    Inventors: Ric Fulop, Michael Andrew Gibson, Emanuel Michael Sachs, Jonah Samuel Myerberg
  • Publication number: 20170182560
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a bulk metallic glass build material. By heating the bulk metallic glass at an elevated temperature in between an object and adjacent support structures, an interface layer can be interposed between the object and support where the bulk metallic glass becomes crystallized to create a more brittle interface that facilitates removal of the support structure from the object after fabrication.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 29, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Michael Andrew Gibson
  • Publication number: 20170173697
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a bulk metallic glass build material. By using thermally mismatched bulk metallic glasses for an object and adjacent support structures, the interface layer between these structures can be melted and crystallized to create a more brittle interface that facilitates removal of the support structure from the object after fabrication.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Michael Andrew Gibson
  • Publication number: 20170173693
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. Joule heating is applied to an interface between adjacent layers of the object by creating an electrical circuit across the interface and applying pulsed current sufficient to join the metallic build material across the adjacent layers.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170173879
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The exit of the nozzle may include a number of concentric rings, where each of which may be selectively opened or closed during extrusion to control extrusion properties such as a volume of extrudate or a mixture of material exiting the nozzle.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170173877
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. A former extending from a nozzle of the printer supplements a layer fusion process by applying a normal force on new material as it is deposited to form the object. The former may use a variety of techniques such as heat and rolling to improve physical bonding between layers.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Anastasios John Hart, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170173695
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material such as a bulk metallic glass. A thermal history of the object may be maintained, e.g., on a voxel-by-voxel basis in order to maintain a thermal budget throughout the object suitable for preserving the amorphous, uncrystallized state of the bulk metallic glass, and to provide a record for prospective use and analysis of the object.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Richard Remo Fontana, Ricardo Chin, Christopher Allan Schuh, Michael Andrew Gibson
  • Publication number: 20170173878
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process. The shape of an extrusion nozzle may be varied during extrusion to control, e.g., an amount of build material deposited, a shape of extrudate exiting the nozzle, a feature resolution, and the like.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Anastasios John Hart, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170173692
    Abstract: In an aspect, a printer fabricates an object from a computerized model using a fused filament fabrication process and a metallic build material. An ultrasonic vibrator is incorporated into the printer to improve the printing process, e.g., by disrupting a passivation layer on the deposited material to improve interlayer bonding, and to prevent adhesion of the metallic build material to a nozzle and other printer components.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Anastasios John Hart, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170173694
    Abstract: A printer fabricates an object from a computerized model using a fused filament fabrication process and a bulk metallic glass. A shearing engine within a feed path for the bulk metallic glass actively induces a shearing displacement of the bulk metallic glass to mitigate crystallization, more specifically to extend processing time for handling the bulk metallic glass at elevated temperatures.
    Type: Application
    Filed: December 16, 2016
    Publication date: June 22, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Matthew David Verminski, Jan Schroers, Anastasios John Hart, Richard Remo Fontana, Ricardo Chin, Nicholas Mykulowycz, Joseph Yosup Shim, Christopher Allan Schuh, Emanuel Michael Sachs, Yet-Ming Chiang, Michael Andrew Gibson
  • Publication number: 20170056970
    Abstract: Thermal parameters for an additive manufacturing process are estimated using computer modeling, and these thermal parameters are used to control the additive manufacturing process. For example, the thermal parameters may be estimated based on bulk material properties, object geometry, control signals to thermal components of a system, and so forth.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 2, 2017
    Inventors: Ricardo Chin, Ric Fulop, Jonah Samuel Myerberg, Yet Ming-Chiang
  • Publication number: 20170056966
    Abstract: An additive manufacturing system uses electrohydrodynamic (EHD) printing techniques to form a metallic object based upon a digital model. A metal build material is melted within a reservoir and expelled through an outlet of an expeller in a controlled manner using EHD force to modulate surface tension on a meniscus of the liquid metal at the outlet of the expeller. Concurrently, a positioning robotics system moves the expeller relative to a print bed along a toolpath that forms the solidifying metal droplets into a net shape according to the digital model.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 2, 2017
    Inventors: Jonah Samuel Myerberg, Ric Fulop, Ricardo Chin, Yet Ming-Chiang
  • Publication number: 20170056967
    Abstract: A metallic electrohydrodynamic (EHD) three-dimensional printer fabricates an object while surface characteristics of the object are monitored. Sensors acquire data on surface characteristics, and feedback related to these surface characteristics is used to adjust the fabrication process, e.g., where the surface characteristics deviate from a target surface shape.
    Type: Application
    Filed: August 24, 2016
    Publication date: March 2, 2017
    Inventors: Ric Fulop, Jonah Samuel Myerberg, Ricardo Chin, Yet Ming-Chiang
  • Patent number: 7763382
    Abstract: The invention provides bipolar articles (e.g., batteries and capacitors) with new architectures and methods of making and using the same. Articles are provided with interpenetrating anode and cathode structures that allow for improved power density, and arbitrary form factors that allow for formation in substantially any desired shape. The articles are useful for embedding or integral formation in various electronic devices to provide more efficient use of space in the devices. The articles optionally include self-organizing bipolar structures.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: July 27, 2010
    Assignee: A123 Systems, Inc.
    Inventors: Gilbert N. Riley, Jr., Yet Ming Chiang, Antoni S. Gozdz, Michael S. Viola, Ric Fulop
  • Publication number: 20050026037
    Abstract: The invention provides bipolar articles (e.g., batteries and capacitors) with new architectures and methods of making and using the same. Articles are provided with interpenetrating anode and cathode structures that allow for improved power density, and arbitrary form factors that allow for formation in substantially any desired shape. The articles are useful for embedding or integral formation in various electronic devices to provide more efficient use of space in the devices. The articles optionally include self-organizing bipolar structures.
    Type: Application
    Filed: July 28, 2003
    Publication date: February 3, 2005
    Applicant: A123 SYSTEMS, INC.
    Inventors: Gilbert Riley, Yet Chiang, Antoni Gozdz, Michael Viola, Ric Fulop
  • Patent number: D850501
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: June 4, 2019
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Schmitt, Justin Cumming, Alex Fishman, Ric Fulop, Rick Chin, Jonah Samuel Myerberg, Yves Behar, Brandon Heiman
  • Patent number: D868228
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: November 26, 2019
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Schmitt, Justin Cumming, Alex Fishman, Ric Fulop, Rick Chin, Jonah Samuel Myerberg, Yves Behar, Brandon Heiman
  • Patent number: D892286
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: August 4, 2020
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Schmitt, Justin Cumming, Alex Fishman, Ric Fulop, Rick Chin, Jonah Samuel Myerberg, Yves Behar, Brandon Heiman
  • Patent number: D952008
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: May 17, 2022
    Assignee: Desktop Metal, Inc.
    Inventors: Peter Schmitt, Justin Cumming, Alex Fishman, Ric Fulop, Rick Chin, Jonah Samuel Myerberg, Yves Behar, Brandon Heiman