Patents by Inventor Ricardo L. Ohta

Ricardo L. Ohta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11648562
    Abstract: Method, apparatus, and computer program product are provided for anonymized diagnosis using lateral flow assays. In some embodiments, a test card includes one or more lateral flow assay (LFA) with one or more test patterns (e.g., full line, partial line, dot), one or more dummy patterns, and one or more control patterns. To visually encode LFA results, at manufacture, one or more lines/dots containing true results of the LFA(s) each has a position mixed with other “dummy” lines/dots, in randomized position patterns selected from among a plurality of possible position patterns. An optical machine-readable representation of data (e.g., QR code) is attached to the test card and encodes test card identification information (e.g., lot number, serial number, test type) associated with the test card. In some embodiments, a passcode card having a scrapeable coating that conceals a passcode associated with the test card is removably attached to the test card.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: May 16, 2023
    Assignee: International Business Machines Corporation
    Inventors: Ricardo L. Ohta, Jaione Tirapu Azpiroz, Ademir F. Silva, Matheus Esteves Ferreira, Mathias B. Steiner
  • Patent number: 11555801
    Abstract: An assembly is provided for interfacing with a microfluidic chip having at least one microscopic channel configured to receive a liquid sample for analysis. The assembly includes a chip carrier, an electronics module, an optical module, and a mechanical module. The chip carrier includes a base and a cover defining a cavity to receive the microfluidic chip. The electronics module includes a signal generator which applies at least one electrokinetic signal electrode(s) of the chip. The optical module includes an excitation radiation source which causes excitation radiation to impinge on the sample, and an emission radiation detector which detects radiation emitted from the sample. The mechanical module includes a chip-carrier receiving structure, relatable with respect to the optical module for focus and at least one degree of translational freedom.
    Type: Grant
    Filed: September 21, 2019
    Date of Patent: January 17, 2023
    Assignee: International Business Machines Corporation
    Inventors: Jaione T. Azpiroz, Emmanuel Delamarche, Claudius Feger, Ricardo L. Ohta, Mathias B. Steiner, Yuksel Temiz
  • Patent number: 11150187
    Abstract: A system is provided for performing metal trace analysis on a liquid sample. A sample holder holds an analysis substrate that includes a reference region and at least one test region. An ultraviolet (UV) light source emits ultraviolet light illuminating the liquid sample. An optical sensor detects radiation emanating from the liquid sample and converting the detected radiation into an electrical signal. A microcontroller processes the electrical signal. An external interface transmits the processed electrical signal to an external device. The analysis substrate is configured for manual movement by a user. A tracking system detects a sample scanning location for the metal trace analysis, and includes a light source, other than the UV light source, and another optical sensor. The other optical sensor detects light emitted by the light source.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: October 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Engel, Jeannette M. Garcia, Ricardo L. Ohta, Ademir F. Silva, Mathias B. Steiner, Jaione Tirapu Azpiroz, Thomas G. Zimmerman
  • Patent number: 11029300
    Abstract: A method and system for receiving, at a sampling location recommendation module, conventional and complementary information regarding a liquid distribution system, wherein the complementary information includes at least one of a social media post or a consumer report; processing the complementary information and a database of the liquid distribution system in the sampling location recommendation module, using computational and artificial intelligence algorithms, to generate a list of locations for sampling the liquid distribution system; displaying the list of locations; receiving a geo-tagged test record indicative of a sampled contaminant concentration value of at least one location of the list of locations; processing the geo-tagged test record, at a contamination source mapping module, to estimate a location and risk of a contamination source in the liquid distribution system; and displaying the estimated location and risk of the contamination source by modifying a map of the liquid distribution system.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: June 8, 2021
    Assignee: International Business Machines Corporation
    Inventors: Jaione T. Azpiroz, Michael Engel, Ademir Ferreira Da Silva, Ricardo L. Ohta, Andre De Oliveira Botelho, Mathias B. Steiner
  • Publication number: 20210129133
    Abstract: Method, apparatus, and computer program product are provided for anonymized diagnosis using lateral flow assays. In some embodiments, a test card includes one or more lateral flow assay (LFA) with one or more test patterns (e.g., full line, partial line, dot), one or more dummy patterns, and one or more control patterns. To visually encode LFA results, at manufacture, one or more lines/dots containing true results of the LFA(s) each has a position mixed with other “dummy” lines/dots, in randomized position patterns selected from among a plurality of possible position patterns. An optical machine-readable representation of data (e.g., QR code) is attached to the test card and encodes test card identification information (e.g., lot number, serial number, test type) associated with the test card. In some embodiments, a passcode card having a scrapeable coating that conceals a passcode associated with the test card is removably attached to the test card.
    Type: Application
    Filed: November 1, 2019
    Publication date: May 6, 2021
    Inventors: Ricardo L. Ohta, Jaione Tirapu Azpiroz, Ademir F. Silva, Matheus Esteves Ferreira, Mathias B. Steiner
  • Patent number: 10830745
    Abstract: A growth chamber chip includes a base surrounding a growth chamber; a growth medium within the growth chamber; a sensor package within the growth chamber; a sensor feedthrough extending from the sensor package through a portion of the base to an outer surface of the base; and a transparent seal covering the growth chamber. In one or more embodiments, the base includes a nutrient channel connected in fluid communication with the growth medium and exposed to an outer surface of the base. One or more embodiments provide an array of growth chamber chips, with a movable arm that is movable across the array to individually scan each of the growth chamber chips.
    Type: Grant
    Filed: December 25, 2017
    Date of Patent: November 10, 2020
    Assignees: International Business Machines Corporation, UNIVERSIDADE FEDERAL DE MINAS GERAIS (UFMG)
    Inventors: Michael Engel, Ademir Ferreira da Silva, Ado Jorio de Vasconcelos, Ricardo L. Ohta, Mathias B. Steiner
  • Patent number: 10816456
    Abstract: A reconfigurable point-of-care system, comprising an analysis device having one or more detection components to perform a diagnostic method on a sample, the sample being loaded on a microfluidic chip, wherein the analysis device provides identification information, an interface device coupled to the analysis device to provide a communication channel, and a reader unit coupled to the communication channel and having a processor to select the diagnostic method based on the identification information and reconfigure one or more components of the interface device based on the analysis device.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: October 27, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andre de Oliveira Botelho, Ricardo L. Ohta, Mathias B. Steiner, Jaione Tirapu Azpiroz
  • Publication number: 20200018723
    Abstract: An assembly is provided for interfacing with a microfluidic chip having at least one microscopic channel configured to receive a liquid sample for analysis. The assembly includes a chip carrier, an electronics module, an optical module, and a mechanical module. The chip carrier includes a base and a cover defining a cavity to receive the microfluidic chip. The electronics module includes a signal generator which applies at least one electrokinetic signal electrode(s) of the chip. The optical module includes an excitation radiation source which causes excitation radiation to impinge on the sample, and an emission radiation detector which detects radiation emitted from the sample. The mechanical module includes a chip-carrier receiving structure, relatable with respect to the optical module for focus and at least one degree of translational freedom.
    Type: Application
    Filed: September 21, 2019
    Publication date: January 16, 2020
    Inventors: Jaione T. Azpiroz, Emmanuel Delamarche, Claudius Feger, Ricardo L. Ohta, Mathias B. Steiner, Yuksel Temiz
  • Publication number: 20200011797
    Abstract: A system is provided for performing metal trace analysis on a liquid sample. A sample holder holds an analysis substrate that includes a reference region and at least one test region. An ultraviolet (UV) light source emits ultraviolet light illuminating the liquid sample. An optical sensor detects radiation emanating from the liquid sample and converting the detected radiation into an electrical signal. A microcontroller processes the electrical signal. An external interface transmits the processed electrical signal to an external device. The analysis substrate is configured for manual movement by a user. A tracking system detects a sample scanning location for the metal trace analysis, and includes a light source, other than the UV light source, and another optical sensor. The other optical sensor detects light emitted by the light source.
    Type: Application
    Filed: July 18, 2019
    Publication date: January 9, 2020
    Inventors: Michael Engel, Jeannette M. Garcia, Ricardo L. Ohta, Ademir F. Silva, Mathias B. Steiner, Jaione Tirapu Azpiroz, Thomas G. Zimmerman
  • Publication number: 20190383783
    Abstract: A method and system for receiving, at a sampling location recommendation module, conventional and complementary information regarding a liquid distribution system, wherein the complementary information includes at least one of a social media post or a consumer report; processing the complementary information and a database of the liquid distribution system in the sampling location recommendation module, using computational and artificial intelligence algorithms, to generate a list of locations for sampling the liquid distribution system; displaying the list of locations; receiving a geo-tagged test record indicative of a sampled contaminant concentration value of at least one location of the list of locations; processing the geo-tagged test record, at a contamination source mapping module, to estimate a location and risk of a contamination source in the liquid distribution system; and displaying the estimated location and risk of the contamination source by modifying a map of the liquid distribution system
    Type: Application
    Filed: June 14, 2018
    Publication date: December 19, 2019
    Inventors: JAIONE T. AZPIROZ, MICHAEL ENGEL, ADEMIR FERREIRA DA SILVA, RICARDO L. OHTA, ANDRE DE OLIVEIRA BOTELHO, MATHIAS B. STEINER
  • Patent number: 10444184
    Abstract: An assembly is provided for interfacing with a microfluidic chip having at least one microscopic channel configured to receive a liquid sample for analysis. The assembly includes a chip carrier, an electronics module, an optical module, and a mechanical module. The chip carrier includes a base and a cover defining a cavity to receive the microfluidic chip. The electronics module includes a signal generator which applies at least one electrokinetic signal electrode(s) of the chip. The optical module includes an excitation radiation source which causes excitation radiation to impinge on the sample, and an emission radiation detector which detects radiation emitted from the sample. The mechanical module includes a chip-carrier receiving structure, relatable with respect to the optical module for focus and at least one degree of translational freedom.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 15, 2019
    Assignee: International Business Machines Corporation
    Inventors: Jaione T. Azpiroz, Emmanuel Delamarche, Claudius Feger, Ricardo L. Ohta, Mathias B. Steiner, Yuksel Temiz
  • Patent number: 10429303
    Abstract: A portable optical measurement system is provided for performing metal trace analysis on a liquid sample. The system includes a sample holder for holding an analysis substrate that includes the liquid sample during the metal trace analysis. The system further includes an ultraviolet (UV) light source for emitting ultraviolet light illuminating the liquid sample. The system also includes an optical sensor for detecting radiation emanating from the liquid sample and converting the detected radiation into an electrical signal. The system additionally includes a microcontroller for processing the electrical signal. The system further includes an external interface for transmitting the processed electrical signal to an external device.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: October 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael Engel, Jeannette M. Garcia, Ricardo L. Ohta, Ademir F. Silva, Mathias B. Steiner, Jaione Tirapu Azpiroz, Thomas G. Zimmerman
  • Publication number: 20190195851
    Abstract: A growth chamber chip includes a base surrounding a growth chamber; a growth medium within the growth chamber; a sensor package within the growth chamber; a sensor feedthrough extending from the sensor package through a portion of the base to an outer surface of the base; and a transparent seal covering the growth chamber. In one or more embodiments, the base includes a nutrient channel connected in fluid communication with the growth medium and exposed to an outer surface of the base. One or more embodiments provide an array of growth chamber chips, with a movable arm that is movable across the array to individually scan each of the growth chamber chips.
    Type: Application
    Filed: December 25, 2017
    Publication date: June 27, 2019
    Inventors: Michael Engel, Ademir Ferreira da Silva, Ado Jorio de Vasconcelos, Ricardo L. Ohta, Mathias B. Steiner
  • Patent number: 10235489
    Abstract: Methods and systems for fabricating micro-fluidic devices include determining a target cost function value based device design parameters. The performance of one or more chosen design candidates is simulated in a selected simulation model. A design candidate is identified with a cost function value closest to the target cost function value as a best initial design candidate. Design parameters of the best initial design candidate are iteratively modified to provide a modified design candidate having design parameters differing from the design parameters of the best initial design candidate, a cost function value is iteratively calculated for the modified initial design candidate, and optimized device design parameters are iteratively derived from a modified design candidate, until a computed cost function value for the modified design candidate meets the determined target cost function value.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: March 19, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jaione Tirapu Azpiroz, Peter W. Bryant, Rodrigo N. B. Ferreira, Bruno D. C. Flach, Ronaldo Giro, Ricardo L. Ohta
  • Publication number: 20180275056
    Abstract: A portable optical measurement system is provided for performing metal trace analysis on a liquid sample. The system includes a sample holder for holding an analysis substrate that includes the liquid sample during the metal trace analysis. The system further includes an ultraviolet (UV) light source for emitting ultraviolet light illuminating the liquid sample. The system also includes an optical sensor for detecting radiation emanating from the liquid sample and converting the detected radiation into an electrical signal. The system additionally includes a microcontroller for processing the electrical signal. The system further includes an external interface for transmitting the processed electrical signal to an external device.
    Type: Application
    Filed: March 24, 2017
    Publication date: September 27, 2018
    Inventors: Michael Engel, Jeannette M. Garcia, Ricardo L. Ohta, Ademir F. Silva, Mathias B. Steiner, Jaione Tirapu Azpiroz, Thomas G. Zimmerman
  • Publication number: 20180229234
    Abstract: A hybrid microfluidics device includes a substrate having a base region with a width and a length. A paper has testing regions disposed along the width of the base region. A cover has an angled relationship with the base region to form a wedge profile to provide a length-wise droplet pump effect to separately maintain channel-less regions for the testing regions.
    Type: Application
    Filed: February 15, 2017
    Publication date: August 16, 2018
    Inventors: Ricardo L. Ohta, Ademir F. Silva, Mathias B. Steiner
  • Publication number: 20180106759
    Abstract: A reconfigurable point-of-care system, comprising an analysis device having one or more detection components to perform a diagnostic method on a sample, the sample being loaded on a microfluidic chip, wherein the analysis device provides identification information, an interface device coupled to the analysis device to provide a communication channel, and a reader unit coupled to the communication channel and having a processor to select the diagnostic method based on the identification information and reconfigure one or more components of the interface device based on the analysis device.
    Type: Application
    Filed: October 19, 2016
    Publication date: April 19, 2018
    Inventors: Andre de Oliveira Botelho, Ricardo L. Ohta, Mathias B. Steiner, Jaione Tirapu Azpiroz
  • Publication number: 20180068045
    Abstract: Methods and systems for fabricating micro-fluidic devices include determining a target cost function value based device design parameters. The performance of one or more chosen design candidates is simulated in a selected simulation model. A design candidate is identified with a cost function value closest to the target cost function value as a best initial design candidate. Design parameters of the best initial design candidate are iteratively modified to provide a modified design candidate having design parameters differing from the design parameters of the best initial design candidate, a cost function value is iteratively calculated for the modified initial design candidate, and optimized device design parameters are iteratively derived from a modified design candidate, until a computed cost function value for the modified design candidate meets the determined target cost function value.
    Type: Application
    Filed: November 1, 2017
    Publication date: March 8, 2018
    Inventors: Jaione Tirapu Azpiroz, Peter W. Bryant, Rodrigo N.B. Ferreira, Bruno D.C. Flach, Ronaldo Giro, Ricardo L. Ohta
  • Patent number: 9892225
    Abstract: Described herein is a method of designing micro-fluidic devices. A target cost function based on device design parameters is chosen. The performance of one or more design candidates is run in a simulation model. A design candidate with a cost function closest to the target cost function is chosen and modified in an optimization routine to provide a modified design candidate having modified device design parameters. The cost function for the modified initial design candidate is computed, and when the modified design candidate has a computed cost function that meets the target cost function, optimized device design parameters of an optimized device design are obtained. Additional optimization iterations may be performed as needed to arrive at an optimized device design. A micro-fluidic device based on the optimized device design is manufactured.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: February 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jaione Tirapu Azpiroz, Peter W. Bryant, Rodrigo N. B. Ferreira, Bruno D. C. Flach, Ronaldo Giro, Ricardo L. Ohta
  • Publication number: 20170286583
    Abstract: Described herein is a method of designing micro-fluidic devices. A target cost function based on device design parameters is chosen. The performance of one or more design candidates is run in a simulation model. A design candidate with a cost function closest to the target cost function is chosen and modified in an optimization routine to provide a modified design candidate having modified device design parameters. The cost function for the modified initial design candidate is computed, and when the modified design candidate has a computed cost function that meets the target cost function, optimized device design parameters of an optimized device design are obtained. Additional optimization iterations may be performed as needed to arrive at an optimized device design. A micro-fluidic device based on the optimized device design is manufactured.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 5, 2017
    Inventors: Jaione Tirapu Azpiroz, Peter W. Bryant, Rodrigo N.B. Ferreira, Bruno D.C. Flach, Ronaldo Giro, Ricardo L. Ohta