Patents by Inventor Riccardo Gottardi

Riccardo Gottardi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093157
    Abstract: Disclosed herein are various bioreactor devices and systems for growing cellular material, and related methods of growing cellular material. In some cases, a system can include a well plate having a plurality of wells and a bioreactor situated in each well of the well plate. In some cases, a bioreactor can include an inner body which divides the bioreactor into several distinct chambers and facilitates the growth of a multi-tissue sample in the bioreactor. In some cases, a system can include a mechanical actuator situated to mechanically stress tissues grown in a bioreactor.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 21, 2024
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Rocky S. Tuan, Hang Lin, Thomas P. Lozito, Peter Alexander, Douglas Allen Nelson, Jr., Riccardo Gottardi
  • Patent number: 11845961
    Abstract: Disclosed herein are various bioreactor devices and systems for growing cellular material, and related methods of growing cellular material. In some cases, a system can include a well plate having a plurality of wells and a bioreactor situated in each well of the well plate. In some cases, a bioreactor can include an inner body which divides the bioreactor into several distinct chambers and facilitates the growth of a multi-tissue sample in the bioreactor. In some cases, a system can include a mechanical actuator situated to mechanically stress tissues grown in a bioreactor.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: December 19, 2023
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Rocky S. Tuan, Hang Lin, Thomas P. Lozito, Peter Alexander, Douglas Allen Nelson, Jr., Riccardo Gottardi
  • Patent number: 11318103
    Abstract: Methods for inhibiting tissue ossification or calcification in a subject, comprising administering a therapeutically effective amount of BMP I inhibitor-loaded microparticles to a subject in need thereof, wherein the administration provides local and sustained release of the BMP I inhibitor thereby inhibiting tissue ossification or calcification.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: May 3, 2022
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, Ri.Med Foundation
    Inventors: Riccardo Gottardi, Peter Alexander, Patrick A. Bianconi, Steven R. Little
  • Publication number: 20210386825
    Abstract: The present invention provides microparticles that induce the migration of multipotent stem cells to the anatomical site of the microparticles. Various release profiles are demonstrated that depend upon the relative concentration of alginate in the chemokine-loaded microparticle. Local administration and/or intraarticular injection of the microparticles are useful in conditions such as osteoarthritis. Targeted systemic delivery of the alginate chemokine microparticles to distant anatomical sites subjected to autoimmune disease symptomology can be performed by encapsulation within liposomes having targeting ligands. Consequently, upon the creation of the appropriate chemokine gradient, multipotent stem cells will migrate to the distant anatomical site where the liposomes are attached.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 16, 2021
    Applicants: UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION, Ri.MED Foundation
    Inventors: Steven R. Little, Riccardo Gottardi, Mintai Peter Hwang, Daniel DeSantis
  • Patent number: 11154858
    Abstract: Disclosed herein are various bioreactor devices and systems for growing cellular material, and related methods of growing cellular material. In some cases, a system can include a bioreactor system having one or more wells with at least one fluidic passageway coupled to each well to feed fluids to biological material being developed inside the well. In some cases, a bioreactor system can include a main body comprising the perimeter of the well and the fluidic passageways, a cover that forms the top of the well and provides optical access into the well, and a base that forms the bottom surface of the well. The cover and base can be attached and detached from the main body to seal the well closed and to physically access the contents of the well.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: October 26, 2021
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Riccardo Gottardi, Peter Alexander, Bryan Romell, Rocky S. Tuan
  • Patent number: 11129875
    Abstract: The present invention provides microparticles that induce the migration of multipotent stem cells to the anatomical site of the microparticles. Various release profiles are demonstrated that depend upon the relative concentration of alginate in the chemokine-loaded microparticle. Local administration and/or intraarticular injection of the microparticles are useful in conditions such as osteoarthritis. Targeted systemic delivery of the alginate chemokine microparticles to distant anatomical sites subjected to autoimmune disease symptomology can be performed by encapsulation within liposomes having targeting ligands. Consequently, upon the creation of the appropriate chemokine gradient, multipotent stem cells will migrate to the distant anatomical site where the liposomes are attached.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: September 28, 2021
    Assignees: UNIVERSITY OF PITTSBURGH—OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION, RI.MED FOUNDATION
    Inventors: Steven R. Little, Riccardo Gottardi, Mintai Peter Hwang, Daniel DeSantis
  • Publication number: 20210139859
    Abstract: Disclosed herein are various bioreactor devices and systems for growing cellular material, and related methods of growing cellular material. In some cases, a system can include a well plate having a plurality of wells and a bioreactor situated in each well of the well plate. In some cases, a bioreactor can include an inner body which divides the bioreactor into several distinct chambers and facilitates the growth of a multi-tissue sample in the bioreactor. In some cases, a system can include a mechanical actuator situated to mechanically stress tissues grown in a bioreactor.
    Type: Application
    Filed: January 19, 2021
    Publication date: May 13, 2021
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Rocky S. Tuan, Hang Lin, Thomas P. Lozito, Peter Alexander, Douglas Allen Nelson, JR., Riccardo Gottardi
  • Patent number: 10900023
    Abstract: Disclosed herein are various bioreactor devices and systems for growing cellular material, and related methods of growing cellular material. In some cases, a system can include a well plate having a plurality of wells and a bioreactor situated in each well of the well plate. In some cases, a bioreactor can include an inner body which divides the bioreactor into several distinct chambers and facilitates the growth of a multi-tissue sample in the bioreactor. In some cases, a system can include a mechanical actuator situated to mechanically stress tissues grown in a bioreactor.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: January 26, 2021
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Rocky S. Tuan, Hang Lin, Thomas P. Lozito, Peter Alexander, Douglas A. Nelson, Jr., Riccardo Gottardi
  • Publication number: 20200270561
    Abstract: Disclosed mechanical stimulator systems can maintain the sterility of biological samples within a multi-well plate while mechanically stimulating the samples. The systems disclosed herein allow for the individual activation by mechanical compression of a high number of samples at the same time, while maintaining sterility of the samples. The well plates, guides, actuations pistons, and other components of the disclosed systems can be configured to be contained in or adjacent to an incubator that can control properties such as gas levels and temperature while at the same time allowing for the mechanical actuation of the biological samples.
    Type: Application
    Filed: October 19, 2018
    Publication date: August 27, 2020
    Applicants: University of Pittsburgh - Of the Commonwealth System of Higher Education, Fondazione Ri.MED
    Inventors: Davide Marino, Riccardo Gottardi, Rocky Sung Chi Tuan
  • Publication number: 20190209651
    Abstract: The present invention provides microparticles that induce the migration of multipotent stem cells to the anatomical site of the microparticles. Various release profiles are demonstrated that depend upon the relative concentration of alginate in the chemokine-loaded microparticle. Local administration and/or intraarticular injection of the microparticles are useful in conditions such as osteoarthritis. Targeted systemic delivery of the alginate chemokine microparticles to distant anatomical sites subjected to autoimmune disease symptomology can be performed by encapsulation within liposomes having targeting ligands. Consequently, upon the creation of the appropriate chemokine gradient, multipotent stem cells will migrate to the distant anatomical site where the liposomes are attached.
    Type: Application
    Filed: January 7, 2019
    Publication date: July 11, 2019
    Inventors: Steven R. Little, Riccardo Gottardi, Mintai Peter Hwang, Daniel DeSantis
  • Publication number: 20190142758
    Abstract: Methods for inhibiting tissue ossification or calcification in a subject, comprising administering a therapeutically effective amount of BMP I inhibitor-loaded microparticles to a subject in need thereof, wherein the administration provides local and sustained release of the BMP I inhibitor thereby inhibiting tissue ossification or calcification.
    Type: Application
    Filed: November 29, 2018
    Publication date: May 16, 2019
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Riccardo Gottardi, Peter Alexander, Patrick A. Bianconi, Steven R. Little
  • Publication number: 20190076840
    Abstract: Disclosed herein are various bioreactor devices and systems for growing cellular material, and related methods of growing cellular material. In some cases, a system can include a bioreactor system having one or more wells with at least one fluidic passageway coupled to each well to feed fluids to biological material being developed inside the well. In some cases, a bioreactor system can include a main body comprising the perimeter of the well and the fluidic passageways, a cover that forms the top of the well and provides optical access into the well, and a base that forms the bottom surface of the well. The cover and base can be attached and detached from the main body to seal the well closed and to physically access the contents of the well.
    Type: Application
    Filed: October 6, 2016
    Publication date: March 14, 2019
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Riccardo Gottardi, Peter Alexander, Bryan Romell, Rocky Sung Chi Tuan
  • Patent number: 10195252
    Abstract: The present invention provides microparticles that deliver in vivo predictable release profiles of at least one chemokine to create a biomimetic chemokine concentration gradient that induces the migration of multipotent stem cells to the anatomical site of the microparticles. Various release profiles are demonstrated that depend upon the relative concentration of alginate in the chemokine-loaded microparticle. Local administration and/or intraarticular injection of the microparticles are useful in conditions such as osteoarthritis. Targeted systemic delivery of the alginate chemokine microparticles to distant anatomical sites subjected to autoimmune disease symptomology can be performed by encapsulation within liposomes having targeting ligands. Consequently, upon the creation of the appropriate chemokine gradient, multipotent stem cells will migrate to the distant anatomical site where the liposomes are attached.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: February 5, 2019
    Assignee: University Of Pittsburgh—Of The Commonwealth System of Higher Education
    Inventors: Steven R. Little, Riccardo Gottardi, Mintai Peter Hwang, Daniel DeSantis
  • Patent number: 10179111
    Abstract: Methods for inhibiting tissue ossification or calcification in a subject, comprising administering a therapeutically effective amount of BMP I inhibitor-loaded microparticles to a subject in need thereof, wherein the administration provides local and sustained release of the BMP I inhibitor thereby inhibiting tissue ossification or calcification.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: January 15, 2019
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Riccardo Gottardi, Peter Alexander, Patrick A. Bianconi, Steven R. Little
  • Publication number: 20170014349
    Abstract: Methods for inhibiting tissue ossification or calcification in a subject, comprising administering a therapeutically effective amount of BMP I inhibitor-loaded microparticles to a subject in need thereof, wherein the administration provides local and sustained release of the BMP I inhibitor thereby inhibiting tissue ossification or calcification.
    Type: Application
    Filed: March 5, 2015
    Publication date: January 19, 2017
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Riccardo Gottardi, Peter Alexander, Patrick A. Bianconi, Steven R. Little
  • Publication number: 20160201037
    Abstract: Disclosed herein are various bioreactor devices and systems for growing cellular material, and related methods of growing cellular material. In some cases, a system can include a well plate having a plurality of wells and a bioreactor situated in each well of the well plate. In some cases, a bioreactor can include an inner body which divides the bioreactor into several distinct chambers and facilitates the growth of a multi-tissue sample in the bioreactor. In some cases, a system can include a mechanical actuator situated to mechanically stress tissues grown in a bioreactor.
    Type: Application
    Filed: August 22, 2014
    Publication date: July 14, 2016
    Inventors: Rocky S. TUAN, Hang LIN, Thomas P. LOZITO, Peter ALEXANDER, Douglas A. NELSON, JR., Riccardo GOTTARDI
  • Publication number: 20150265677
    Abstract: The present invention provides microparticles that deliver in vivo predictable release profiles of at least one chemokine to create a biomimetic chemokine concentration gradient that induces the migration of multipotent stem cells to the anatomical site of the microparticles. Various release profiles are demonstrated that depend upon the relative concentration of alginate in the chemokine-loaded microparticle. Local administration and/or intraarticular injection of the microparticles are useful in conditions such as osteoarthritis. Targeted systemic delivery of the alginate chemokine microparticles to distant anatomical sites subjected to autoimmune disease symptomology can be performed by encapsulation within liposomes having targeting ligands. Consequently, upon the creation of the appropriate chemokine gradient, multipotent stem cells will migrate to the distant anatomical site where the liposomes are attached.
    Type: Application
    Filed: August 1, 2013
    Publication date: September 24, 2015
    Inventors: Steven R. Little, Riccardo Gottardi, Mintai Peter Hwang
  • Publication number: 20150211797
    Abstract: The invention relates to a device having a bottom, side walls and a ceiling, which together define a channel, as well as transportation means, extending in an axial direction of said channel from an entry port of the channel to an exit port of said channel, for transferring a metallurgical material from said entry port to said exit port.
    Type: Application
    Filed: June 28, 2012
    Publication date: July 30, 2015
    Inventors: Stefano Miani, Riccardo Gottardi