Patents by Inventor Richard A. Blanchard

Richard A. Blanchard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8234392
    Abstract: Methods and apparatuses for providing hardware acceleration of a web browser are disclosed. In one embodiment, a method of operating a web browser on a computer system includes analyzing a data stream having a plurality of fragments. The method further includes determining what fragments of the data stream should be rendered for storage into separate backing stores. The method further includes rendering the fragments into raster images intended for hardware acceleration. The method further includes storing the raster images in the backing stores located in a graphics processing unit.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: July 31, 2012
    Assignee: Apple Inc.
    Inventors: Peter Graffagnino, Dave Hyatt, Richard Blanchard, Kevin Calhoun, Gilles Drieu, Maciej Stachowiak, Don Melton, Darin Adler
  • Publication number: 20120178195
    Abstract: The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.
    Type: Application
    Filed: February 4, 2012
    Publication date: July 12, 2012
    Applicants: National Aeronautics and Space Administration (NASA), NthDegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Mark David Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Publication number: 20120178194
    Abstract: The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.
    Type: Application
    Filed: February 4, 2012
    Publication date: July 12, 2012
    Applicants: National Aeronautics and Space Administration (NASA), NthDegree Technologies Worldwide Inc.
    Inventors: William Johnstone Ray, Mark David Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Publication number: 20120164797
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of fabricating an electronic device comprises: depositing one or more first conductors; and depositing a plurality of diodes suspended in a mixture of a first solvent and a viscosity modifier. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Publication number: 20120164796
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of making a liquid or gel suspension of diodes comprises: adding a viscosity modifier to a plurality of diodes in a first solvent; and mixing the plurality of diodes, the first solvent and the viscosity modifier to form the liquid or gel suspension of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Publication number: 20120161112
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary diode comprises: a light emitting or absorbing region having a diameter between about 20 and 30 microns and a height between about 2.5 to 7 microns; a first terminal coupled to the light emitting region on a first side, the first terminal having a height between about 1 to 6 microns; and a second terminal coupled to the light emitting region on a second side opposite the first side, the second terminal having a height between about 1 to 6 microns.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Brad Oraw
  • Publication number: 20120161113
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary diode comprises: a light emitting or absorbing region having a diameter between about 20 and 30 microns and a height between 2.5 to 7 microns; a plurality of first terminals spaced apart and coupled to the light emitting region peripherally on a first side, each first terminal of the plurality of first terminals having a height between about 0.5 to 2 microns; and one second terminal coupled centrally to a mesa region of the light emitting region on the first side, the second terminal having a height between 1 to 8 microns.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Brad Oraw
  • Publication number: 20120161195
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. In other exemplary embodiments a second solvent is also included, and the composition has a viscosity substantially between about 100 cps and about 25,000 cps at about 25° C. In an exemplary embodiment, a composition comprises: a plurality of diodes or other two-terminal integrated circuits; one or more solvents comprising about 15% to 99.9% of any of N-propanol, isopropanol, dipropylene glycol, diethylene glycol, propylene glycol, 1-methoxy-2-propanol, N-octanol, ethanol, tetrahydrofurfuryl alcohol, cyclohexanol, and mixtures thereof; a viscosity modifier comprising about 0.10% to 2.5% methoxy propyl methylcellulose resin or hydroxy propyl methylcellulose resin or mixtures thereof; and about 0.01% to 2.5% of a plurality of substantially optically transparent and chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Publication number: 20120161338
    Abstract: An exemplary printable composition of a liquid or gel suspension of two-terminal integrated circuits comprises: a plurality of two-terminal integrated circuits, each two-terminal integrated circuit of the plurality of two-terminal integrated circuits less than about 75 microns in any dimension; a first solvent; a second solvent different from the first solvent; and a viscosity modifier; wherein the composition has a viscosity substantially about 50 cps to about 25,000 cps at about 25° C.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Publication number: 20120161196
    Abstract: An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus comprises: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
    Type: Application
    Filed: August 31, 2011
    Publication date: June 28, 2012
    Applicant: NthDegree Technologies Worldwide Inc.
    Inventors: Mark David Lowenthal, William Johnstone Ray, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Brad Oraw, Jeffrey Baldridge, Eric Anthony Perozziello
  • Patent number: 8193565
    Abstract: A semiconductor device includes a source region, a drain region, a gate region, and a drift region. The drift region further includes an active drift region and inactive floating charge control (FCC) regions. The active drift region conducts current between the source region and the drain region when voltage is applied to the gate region. The inactive FCC regions, which field-shape the active drift region to improve breakdown voltage, are vertically stacked in the drift region and are separated by the active drift region. Vertically stacking the inactive FCC regions reduce on-resistance while maintaining higher breakdown voltages.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: June 5, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Robert Kuo-Chang Yang, Muhammed Ayman Shibib, Richard A. Blanchard
  • Publication number: 20120098055
    Abstract: Power semiconductor devices, and related methods, where majority carrier flow is divided into paralleled flows through two drift regions of opposite conductivity types.
    Type: Application
    Filed: July 5, 2011
    Publication date: April 26, 2012
    Applicant: MaxPower Semiconductor, Inc.
    Inventors: Mohamed N. Darwish, Jun Zeng, Richard A. Blanchard
  • Publication number: 20120098056
    Abstract: A vertical-current-flow device includes a trench which includes an insulated gate and which extends down into first-conductivity-type semiconductor material. A phosphosilicate glass layer is positioned above the insulated gate and a polysilicon layer is positioned above the polysilicate glass layer. Source and body diffusions of opposite conductivity types are positioned adjacent to a sidewall of the trench. A drift region is positioned to receive majority carriers which have been injected by the source, and which have passed through the body diffusion. A drain region is positioned to receive majority carriers which have passed through the drift region. The gate is capacitively coupled to control inversion of a portion of the body region. As an alternative, a dielectric layer may be used in place of the doped glass where permanent charge is positioned in the dielectric layer.
    Type: Application
    Filed: August 3, 2011
    Publication date: April 26, 2012
    Applicant: MAXPOWER SEMICONDUCTOR, INC.
    Inventors: Richard A. Blanchard, Jun Zeng
  • Patent number: 8133768
    Abstract: The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: March 13, 2012
    Assignees: NthDegree Technologies Worldwide Inc, The United States of America as represented by the Unites States National Aeronautics and Space Administration
    Inventors: William Johnstone Ray, Mark D. Lowenthal, Neil O. Shotton, Richard A. Blanchard, Mark Allan Lewandowski, Kirk A. Fuller, Donald Odell Frazier
  • Publication number: 20120043602
    Abstract: Improved MOSFET structures and processes, where multiple polysilicon embedded regions are introduced into the n+ source contact area. A top poly Field Plate is used to shield the electric field from penetrating into the channel, so that a very short channel can be used without jeopardizing the device drain-source leakage current. A bottom poly Field Plate is used to modulate the electric field distribution in the drift region such that a more uniform field distribution can be obtained.
    Type: Application
    Filed: January 11, 2010
    Publication date: February 23, 2012
    Applicant: MaxPower Semiconductor Inc.
    Inventors: Jun Zeng, Mohamed N. Darwish, Richard A. Blanchard
  • Patent number: 8121901
    Abstract: Online purchasing of components compatible with particular hardware devices of a computer system. In one aspect, the identity of a hardware device capable of communicating with computer systems is automatically determined. At least one component for the hardware device is displayed on a computer system based on the identity of the hardware device such that the user can select the at least one component for purchase, where the at least one component is compatible with and for use with the hardware device.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: February 21, 2012
    Assignee: Apple Inc.
    Inventors: Richard Blanchard, Jr., Himanshu Gupta, Howard A. Miller, Michael B. Shebanek, Brian R. Smiley, Ralph E. Zazula
  • Publication number: 20110304631
    Abstract: Methods of expressing animation in a data stream are disclosed. In one embodiment, a method of expressing animation in a data stream includes defining animation states in the data stream with each state having at least one property such that properties are animated as a group. The animation states that are defined in the data stream may be expressed as an extension of a styling sheet language. The data stream may include web content and the defined animation states.
    Type: Application
    Filed: August 26, 2011
    Publication date: December 15, 2011
    Inventors: Peter Graffagnino, Dave Hyatt, Richard Blanchard, Kevin Calhoun, Gilles Drieu, Maciej Stachowiak, Don Melton, Darin Adler
  • Patent number: 8047277
    Abstract: A method and apparatus for removing a string of casing from a well bore. The method and apparatus include a plurality of drill bits substantially aligned with each other for drilling a plurality of holes in the string of casing. The plurality of holes can be used to lift the string in casing from the well bore via a series of incremental casing sections.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: November 1, 2011
    Assignee: Hudson Services, Inc.
    Inventors: Sandra Remedies, John Rucker, Richard Blanchard, Donald D. Deslatte, Kenneth J. Cahill
  • Patent number: 8049271
    Abstract: A method is provided for forming a power semiconductor device. The method begins by providing a substrate of a second conductivity type and then forming a voltage sustaining region on the substrate. The voltage sustaining region is formed by depositing an epitaxial layer of a first conductivity type on the substrate and forming at least one terraced trench in the epitaxial layer. The terraced trench has a plurality of portions that differ in width to define at least one annular ledge therebetween. A barrier material is deposited along the walls of the trench. A dopant of a second conductivity type is implanted through the barrier material lining the annular ledge and said trench bottom and into adjacent portions of the epitaxial layer. The dopant is diffused to form at least one annular doped region in the epitaxial layer and at least one other region located below the annular doped region.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: November 1, 2011
    Assignee: Vishay General Semiconductor LLC
    Inventors: Richard A. Blanchard, Jean-Michel Guillot
  • Publication number: 20110254088
    Abstract: Semiconductor power devices, and related methods, wherein a recessed contact makes lateral ohmic contact to the source diffusion, but is insulated from the underlying recessed field plate (RFP). Such an insulated RFP is here referred to as an embedded recessed field plate (ERFP).
    Type: Application
    Filed: April 19, 2011
    Publication date: October 20, 2011
    Applicant: MAXPOWER SEMICONDUCTOR INC.
    Inventors: Mohamed N. Darwish, Jun Zeng, Shih-Tzung Su, Richard A. Blanchard