Patents by Inventor Richard A. Huntington

Richard A. Huntington has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10174682
    Abstract: Provided are more efficient techniques for operating gas turbine systems. In one embodiment a gas turbine system comprises an oxidant system, a fuel system, a control system, and a number of combustors adapted to receive and combust an oxidant from the oxidant system and a fuel from the fuel system to produce an exhaust gas. The gas turbine system also includes a number of oxidant-flow adjustment devices, each of which are operatively associated with one of the combustors, wherein an oxidant-flow adjustment device is configured to independently regulate an oxidant flow rate into the associated combustor. An exhaust sensor is in communication with the control system. The exhaust sensor is adapted to measure at least one parameter of the exhaust gas, and the control system is configured to independently adjust each of the oxidant-flow adjustment devices based, at least in part, on the parameter measured by the exhaust sensor.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: January 8, 2019
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Franklin F. Mittricker, Richard A. Huntington
  • Patent number: 10161312
    Abstract: A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle has first and second passages that separately inject respective first and second flows into a chamber of the turbine combustor to produce a diffusion flame. The first flow includes a first fuel and a first diluent, and the second flow includes a first oxidant. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: December 25, 2018
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Sulabh K. Dhanuka, Ilya Aleksandrovich Slobodyanskiy
  • Patent number: 10138815
    Abstract: A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle is configured to produce a diffusion flame. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path. In addition, the system includes a first catalyst unit disposed along the exhaust recirculation path.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: November 27, 2018
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Sulabh K. Dhanuka, Ilya Aleksandrovich Slobodyanskiy
  • Patent number: 10132412
    Abstract: A method and system for actively controlling an axial separation between a seal face of a stationary ring and a seal face of a rotating ring of a gas seal is disclosed. At least one property is sensed indicative of a condition of at least one of the seal faces. With at least one sensing device, a characteristic of the axial separation between the seal faces is sensed. A net magnetic force of at least one magnetic device is adjusted based on the property and/or the characteristic. Adjusting the net magnetic force adjusts the axial separation between the seal faces. Without using a buffer gas between the seal faces, flow of gas or other fluid is controlled between the seal faces by adjusting the axial separation.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: November 20, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Michael T. Matheidas, Niran Singh Khaira, Richard A. Huntington
  • Patent number: 10100741
    Abstract: A system is provided with a turbine combustor having a first diffusion fuel nozzle, wherein the first diffusion fuel nozzle has first and second passages that separately inject respective first and second flows into a chamber of the turbine combustor to produce a diffusion flame. The first flow includes a first fuel, and the second flow includes a first oxidant and a first diluent. The system includes a turbine driven by combustion products from the diffusion flame in the turbine combustor. The system also includes an exhaust gas compressor, wherein the exhaust gas compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor along an exhaust recirculation path.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: October 16, 2018
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Sulabh K. Dhanuka, Ilya Aleksandrovich Slobodyanskiy
  • Patent number: 10079564
    Abstract: A non-transitory, computer readable medium stores instructions executable by a processor of an electronic device. The instructions include instructions to determine that a transient event is occurring in an electrical grid coupled to an EGR gas turbine system, wherein the transient event is an under-frequency or an under-voltage event. The instructions also include instructions to increase a flow rate of fuel to a combustor of the EGR gas turbine system in response to the transient event when the EGR gas turbine system is operating in a non-stoichiometric combustion mode. The instructions further include instructions to increase a flow rate of oxidant to the combustor before increasing the flow rate of fuel to the combustor, or to decrease a local consumption of the electrical power to increase a portion of the electrical power that is exported to the attached electrical grid, or both, in response to the transient event when the EGR gas turbine system is operating in a stoichiometric combustion mode.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: September 18, 2018
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Karl Dean Minto, Bin Xu, Jonathan Carl Thatcher, Aaron Lavene Vorel
  • Patent number: 10018274
    Abstract: A method to control an axial separation between a rotating ring and a stationary ring of a dry gas seal. The dry gas seal restricts leakage of a gas or other fluid to or from a rotating device. At least one property of the gas or other fluid is sensed. At least one of the axial separation between the rotating ring and the stationary ring, and a time rate of change of the axial separation, is sensed. A stiffness of a film between the rotating ring and the stationary ring is estimated. A field strength of at least one magnetic device is adjusted based on at least two of the sensed axial separation, the sensed time rate of change of the separation, and the estimated film stiffness. The axial separation between the rotating ring and the stationary ring is adjusted.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: July 10, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Niran Singh Khaira, Richard A. Huntington, Michael T. Matheidas
  • Publication number: 20180154300
    Abstract: The present techniques are directed to a system and method for recovering carbon dioxide (CO2). The method includes recovering the CO2 from a gas mixture including the CO2 via a CO2 separation system. The CO2 separation system includes a rotating freezer/melter.
    Type: Application
    Filed: January 30, 2018
    Publication date: June 7, 2018
    Inventors: Richard A. Huntington, Robert D. Denton, Sulabh K. Dhanuka
  • Publication number: 20180135526
    Abstract: Provided are more efficient techniques for operating gas turbine systems. In one embodiment a gas turbine system comprises an oxidant system, a fuel system, a control system, and a number of combustors adapted to receive and combust an oxidant from the oxidant system and a fuel from the fuel system to produce an exhaust gas. The gas turbine system also includes a number of oxidant-flow adjustment devices, each of which are operatively associated with one of the combustors, wherein an oxidant-flow adjustment device is configured to independently regulate an oxidant flow rate into the associated combustor. An exhaust sensor is in communication with the control system. The exhaust sensor is adapted to measure at least one parameter of the exhaust gas, and the control system is configured to independently adjust each of the oxidant-flow adjustment devices based, at least in part, on the parameter measured by the exhaust sensor.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 17, 2018
    Inventors: Franklin F. Mittricker, Richard A. Huntington
  • Patent number: 9951658
    Abstract: A system includes an oxidant compressor and a gas turbine engine. The gas turbine engine includes a combustor section having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and route an exhaust flow to the turbine combustor and the oxidant compressor is configured to compress and route an oxidant flow to the turbine combustor. The gas turbine engine also includes an inlet oxidant heating system configured to route at least one of a first portion of the combustion products, or a second portion of the exhaust flow, or any combination thereof, to an inlet of the oxidant compressor.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: April 24, 2018
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Vahid Vaezi, Franklin F. Mittricker, Richard A. Huntington
  • Patent number: 9938861
    Abstract: The present techniques are directed to systems and a method for combusting a fuel in a gas turbine. An exemplary method includes providing a fuel to a combustor on a gas turbine, providing an oxidant to the combustor, and combusting the fuel and the oxidant in the combustor to produce an exhaust gas. At least a portion of the exhaust gas is passed through a water-gas shifting catalyst to form a low CO content product gas.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: April 10, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Richard A. Huntington
  • Patent number: 9903279
    Abstract: Provided are more efficient techniques for operating gas turbine systems. In one embodiment a gas turbine system comprises an oxidant system, a fuel system, a control system, and a number of combustors adapted to receive and combust an oxidant from the oxidant system and a fuel from the fuel system to produce an exhaust gas. The gas turbine system also includes a number of oxidant-flow adjustment devices, each of which are operatively associated with one of the combustors, wherein an oxidant-flow adjustment device is configured to independently regulate an oxidant flow rate into the associated combustor. An exhaust sensor is in communication with the control system. The exhaust sensor is adapted to measure at least one parameter of the exhaust gas, and the control system is configured to independently adjust each of the oxidant-flow adjustment devices based, at least in part, on the parameter measured by the exhaust sensor.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: February 27, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Franklin F. Mittricker, Richard A. Huntington
  • Patent number: 9903316
    Abstract: Methods and systems for low emission power generation in hydrocarbon recovery processes are provided. One system includes a gas turbine system configured to stoichiometrically combust a compressed oxidant derived from enriched air and a fuel in the presence of a compressed recycle exhaust gas and expand the discharge in an expander to generate a recycle exhaust stream and drive a main compressor. A boost compressor receives and increases the pressure of the recycle exhaust stream and prior to being compressed in a compressor configured to generate the compressed recycle exhaust gas. To promote the stoichiometric combustion of the fuel and increase the CO2 content in the recycle exhaust gas, the enriched air can have an increased oxygen concentration.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: February 27, 2018
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Himanshu Gupta, Richard Huntington, Moses K. Minta, Franklin F. Mittricker, Loren K. Starcher
  • Publication number: 20180051929
    Abstract: A method and system for cooling a process fluid is disclosed. An inlet air stream of a turbine is cooled with an inlet air cooling system. Moisture contained in the cooled inlet air stream is condensed and separated from the cooled inlet air stream to produce a water stream in an open-loop circuit. The water stream is sprayed into an air cooler air stream. The combined air cooler air stream and sprayed water stream is directed through an air cooler. Heat is exchanged between the process fluid and the combined air cooler air stream and sprayed water stream to thereby condense, chill, or sub-cool the process fluid.
    Type: Application
    Filed: July 27, 2017
    Publication date: February 22, 2018
    Inventors: Michael T. Matheidas, Paul W. Sibal, Richard A. Huntington
  • Publication number: 20180051928
    Abstract: A system and method for processing natural gas to produce liquefied natural gas is disclosed. The natural gas is cooled in one or more heat exchangers using a first refrigerant from a first refrigerant circuit in which the first refrigerant is compressed in a first compressor driven by a first gas turbine having a first inlet air stream. The natural gas is liquefied using a second refrigerant, the second refrigerant being compressed in a second compressor driven by a second gas turbine having a second inlet air stream. At least one of the inlet air streams is chilled from about the respective dry bulb temperature to a temperature below the respective wet bulb temperature. Water contained in at least one of the chilled first and second air streams is condensed and separated therefrom. At least a portion of the first refrigerant is condensed or sub-cooled using the separated water.
    Type: Application
    Filed: July 27, 2017
    Publication date: February 22, 2018
    Inventors: Richard A. Huntington, Paul W. Sibal, Michael T. Matheidas
  • Publication number: 20180038488
    Abstract: A method and system for actively controlling an axial separation between a seal face of a stationary ring and a seal face of a rotating ring of a gas seal is disclosed. At least one property is sensed indicative of a condition of at least one of the seal faces. With at least one sensing device, a characteristic of the axial separation between the seal faces is sensed. A net magnetic force of at least one magnetic device is adjusted based on the property and/or the characteristic. Adjusting the net magnetic force adjusts the axial separation between the seal faces. Without using a buffer gas between the seal faces, flow of gas or other fluid is controlled between the seal faces by adjusting the axial separation.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 8, 2018
    Inventors: Michael T. MATHEIDAS, Niran Singh Khaira, Richard A. Huntington
  • Patent number: 9863267
    Abstract: A system includes plurality of combustors and a distributed flow measurement system coupled to the plurality of combustors. Each combustor of the plurality of combustors includes one or more oxidant passages and one or more fuel passages. The distributed flow measurement system is configured to measure an oxidant flow rate for a respective oxidant passage of the one or more oxidant passages of the respective combustor based at least in part on an oxidant pressure drop along the respective oxidant passage, and the distributed flow measurement system is configured to measure a fuel flow rate for a respective fuel passage of the one or more fuel passages of the respective combustor based at least in part on a fuel pressure drop along the respective fuel passage.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: January 9, 2018
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Dennis M. O'Dea, Karl Dean Minto, Richard A. Huntington, Sulabh K. Dhanuka, Franklin F. Mittricker
  • Publication number: 20180003083
    Abstract: A system includes a gas turbine engine configured to combust an oxidant and a fuel to generate an exhaust gas, a catalyst bed configured to treat a portion of the exhaust gas from the gas turbine engine to generate a treated exhaust gas, a differential temperature monitor configured to monitor a differential temperature between a first temperature of the portion of exhaust gas upstream of the catalyst bed and a second temperature of the treated exhaust gas downstream of the catalyst bed, and an oxidant-to-fuel ratio system configured to adjust a parameter to maintain an efficacy of the catalyst bed based at least in part on the differential temperature in order to maintain a target equivalence ratio.
    Type: Application
    Filed: August 30, 2017
    Publication date: January 4, 2018
    Inventors: Richard A. Huntington, Sulabh K. Dhanuka
  • Patent number: 9821266
    Abstract: A pressure swing absorption apparatus, including: at least four beds that each include an absorbent material, wherein the at least four beds are configured to rotate and are grouped such that members of one group only have fluid interconnections with members of another group; and a control system that controls a flow rate of a fluid communication between at least two of the beds by adjusting a phase angle difference between the at least two of the beds.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: November 21, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Richard A. Huntington
  • Patent number: 9784182
    Abstract: The present techniques are directed to a system and method for generating power and recovering methane from methane hydrates. The system includes a low emissions power plant configured to generate power, wherein an exhaust gas from the low emissions power plant provides a gas mixture including nitrogen and carbon dioxide. The system also includes a methane recovery system configured to recover methane from methane hydrates by injecting the nitrogen and the carbon dioxide from the gas mixture into the methane hydrates.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: October 10, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Sulabh K. Dhanuka, Michael W. Eaton, Richard A. Huntington