Patents by Inventor Richard A. Lomenzo, JR.

Richard A. Lomenzo, JR. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10982551
    Abstract: A turbomachine airfoil element has an airfoil. The airfoil has an inboard end, an outboard end, a leading edge, a trailing edge, a pressure side, and a suction side. A span between the inboard and an outboard end is 1.4-1.6 inch. A chord length at 50% span is 0.9-1.4 inch. The element is remanufactured by providing first, second, third, fourth, and fifth mode resonance frequencies respectively of 2591.5±10% Hz, 4675.2±10% Hz, 7892.9±10% Hz, 10098.2±10% Hz, and 14808.2±10% Hz.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: April 20, 2021
    Assignee: Raytheon Technologies Corporation
    Inventors: Bryan C. Atkins, Robert J. Esteve, Richard A. Lomenzo, Jr., David P. Houston
  • Patent number: 9885242
    Abstract: A turbomachine airfoil element has an airfoil. The airfoil has an inboard end, an outboard end, a leading edge, a trailing edge, a pressure side, and a suction side. A span between the inboard and an outboard end is 1.4-1.6 inch. A chord length at 50% span is 0.9-1.4 inch. At least three of the following resonance frequencies are present. A first mode resonance frequency is 2591.5±10% Hz. A second mode resonance frequency is 4675.2±10% Hz. A third mode resonance frequency is 7892.9±10% Hz. A fourth mode resonance frequency is 10098.2±10% Hz. A fifth mode resonance frequency is 14808.2±10% Hz.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: February 6, 2018
    Assignee: United Technologies Corporation
    Inventors: Bryan C. Atkins, Robert J. Esteve, Richard A. Lomenzo, Jr., David P. Houston
  • Patent number: 9777591
    Abstract: A resonant frequency testing system for airfoils comprises a broach block, a clamp, an acoustic speaker, a laser vibrometer, and a control processor assembly. The broach block has a slot disposed to receive the airfoil in an airfoil location. The clamp has a torque-actuated shutoff, and is disposed to lock the airfoil in the broach block slot under a fixed clamping force. The acoustic sensor is disposed adjacent the airfoil location to emit sonic pulses, and the laser vibrometer is oriented towards the airfoil location to sense vibration signatures of the airfoil when excited by the sonic pulses. The control processor assembly is configured to control the acoustic speaker and laser vibrometer, to decompose the sensed vibration signatures into resonant frequencies of the airfoil, and to store the resonant frequencies in a digital storage database, correlated with a unique ID corresponding to the airfoil.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: October 3, 2017
    Assignee: United Technologies Corporation
    Inventors: Steven Tine, Richard A. Lomenzo, Jr., Kevin J. Klinefelter, Elizabeth F. Vinson, Kaitlin Olsen, Thomas R. Davis
  • Publication number: 20160319670
    Abstract: A turbomachine airfoil element has an airfoil. The airfoil has an inboard end, an outboard end, a leading edge, a trailing edge, a pressure side, and a suction side. A span between the inboard and an outboard end is 1.4-1.6 inch. A chord length at 50% span is 0.9-1.4 inch. At least three of the following resonance frequencies are present. A first mode resonance frequency is 2591.5±10% Hz. A second mode resonance frequency is 4675.2±10% Hz. A third mode resonance frequency is 7892.9±10% Hz. A fourth mode resonance frequency is 10098.2±10% Hz. A fifth mode resonance frequency is 14808.2±10% Hz.
    Type: Application
    Filed: July 15, 2016
    Publication date: November 3, 2016
    Applicant: United Technologies Corporation
    Inventors: Bryan C. Atkins, Robert J. Esteve, Richard A. Lomenzo, JR., David P. Houston
  • Publication number: 20160230588
    Abstract: A resonant frequency testing system for airfoils comprises a broach block, a clamp, an acoustic speaker, a laser vibrometer, and a control processor assembly. The broach block has a slot disposed to receive the airfoil in an airfoil location. The clamp has a torque-actuated shutoff, and is disposed to lock the airfoil in the broach block slot under a fixed clamping force. The acoustic sensor is disposed adjacent the airfoil location to emit sonic pulses, and the laser vibrometer is oriented towards the airfoil location to sense vibration signatures of the airfoil when excited by the sonic pulses.
    Type: Application
    Filed: February 11, 2015
    Publication date: August 11, 2016
    Inventors: Steven Tine, Richard A. Lomenzo,, JR., Kevin J. Klinefelter, Elizabeth F. Vinson, Kaitlin Olsen, Thomas R. Davis
  • Patent number: 9394793
    Abstract: A turbomachine airfoil element has an airfoil. The airfoil has an inboard end, an outboard end, a leading edge, a trailing edge, a pressure side, and a suction side. A span between the inboard and an outboard end is 1.4-1.6 inch. A chord length at 50% span is 0.9-1.4 inch. At least three of the following resonance frequencies are present. A first mode resonance frequency is 2591.5±10% Hz. A second mode resonance frequency is 4675.2±10% Hz. A third mode resonance frequency is 7892.9±10% Hz. A fourth mode resonance frequency is 10098.2±10% Hz. A fifth mode resonance frequency is 14808.2±10% Hz.
    Type: Grant
    Filed: April 1, 2013
    Date of Patent: July 19, 2016
    Assignee: United Technologies Corporation
    Inventors: Bryan C. Atkins, Robert J. Esteve, Richard A. Lomenzo, Jr., David P. Houston
  • Publication number: 20130312527
    Abstract: An integrated excitation and measurement system includes a support member. A single confocal ultrasonic transducer is mounted to the support member. The ultrasonic transducer is configured to produce first and second ultrasonic beams having different frequencies than one another that generate an excitation input at a focal point. First, second and third fiber optic elements are mounted to the support member and aligned with the focal point. The fiber optic elements are configured to sense a three-dimensional excitation response at the focal point.
    Type: Application
    Filed: May 22, 2012
    Publication date: November 28, 2013
    Inventor: Richard A. Lomenzo, JR.