Patents by Inventor Richard A. Prather

Richard A. Prather has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210137667
    Abstract: An intravascular emboli capture and retrieval system for intravascular embolism protection and embolism removal or maceration. Guidewire mounted proximally and distally located multiple opening filters are deployed within the vasculature and used to part, divide and macerate embolic debris and to capture such embolic debris within the confines thereof. A deployable flexible preformed memory shaped capture sleeve is alternatively used to collapse one or more filters and embolic debris therein for subsequent proximal withdrawal from the vasculature.
    Type: Application
    Filed: August 21, 2020
    Publication date: May 13, 2021
    Inventors: Michael Bonnette, Richard Prather, Eric J. Thor, Stephen E. Weisel, Douglas L. Ball, David B. Morris, Debra M. Kozak, Gary Ansel
  • Patent number: 10806559
    Abstract: An intravascular emboli capture and retrieval system for intravascular embolism protection and embolism removal or maceration. Guidewire mounted proximally and distally located multiple opening filters are deployed within the vasculature and used to part, divide and macerate embolic debris and to capture such embolic debris within the confines thereof. A deployable flexible preformed memory shaped capture sleeve is alternatively used to collapse one or more filters and embolic debris therein for subsequent proximal withdrawal from the vasculature.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: October 20, 2020
    Assignee: Surmodics MD, LLC
    Inventors: Michael Bonnette, Richard Prather, Eric J Thor, Stephen E Weisel, Douglas L Ball, David B Morris, Debra M Kozak, Gary Ansel
  • Patent number: 9943397
    Abstract: An intravascular emboli capture and retrieval system for intravascular embolism protection and embolism removal or maceration. Guidewire mounted proximally and distally located multiple opening filters are deployed within the vasculature and used to part, divide and macerate embolic debris and to capture such embolic debris within the confines thereof. A deployable flexible preformed memory shaped capture sleeve is alternatively used to collapse one or more filters and embolic debris therein for subsequent proximal withdrawal from the vasculature.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: April 17, 2018
    Assignee: Embolitech, LLC
    Inventors: Michael Bonnette, Richard Prather, Eric J Thor, Stephen E Weisel, Douglas L Ball, David B Morris, Debra M Kozak, Gary Ansel
  • Patent number: 9827084
    Abstract: An intravascular emboli capture and retrieval system for intravascular embolism protection and embolism removal or maceration. Guidewire mounted proximally and distally located multiple opening filters are deployed within the vasculature and used to part, divide and macerate embolic debris and to capture such embolic debris within the confines thereof. A deployable flexible preformed memory shaped capture sleeve is alternatively used to collapse one or more filters and embolic debris therein for subsequent proximal withdrawal from the vasculature.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: November 28, 2017
    Assignee: Embolitech, LLC
    Inventors: Michael Bonnette, Richard Prather, Eric J. Thor, Stephen E. Weisel, Douglas L. Ball, David B. Morris, Debra M. Kozak, Gary Ansel
  • Publication number: 20170325931
    Abstract: An intravascular emboli capture and retrieval system for intravascular embolism protection and embolism removal or maceration. Guidewire mounted proximally and distally located multiple opening filters are deployed within the vasculature and used to part, divide and macerate embolic debris and to capture such embolic debris within the confines thereof. A deployable flexible preformed memory shaped capture sleeve is alternatively used to collapse one or more filters and embolic debris therein for subsequent proximal withdrawal from the vasculature.
    Type: Application
    Filed: August 3, 2017
    Publication date: November 16, 2017
    Applicant: Embolitech, LLC
    Inventors: Michael Bonnette, Richard Prather, Eric J Thor, Stephen E Weisel, Douglas L Ball, David B Morris, Debra M Kozak, Gary Ansel
  • Patent number: 9586023
    Abstract: A direct stream hydrodynamic catheter system is provided for the removal of thrombus, lesions and the like including provisions for the infusion of drugs, lysing fluids and the like into a blood vessel. Physician controlled powered direct fluid jet streams emanate from a fluid jet emanatory in the form of robust radially directed fluid jet streams to impinge upon and ablate difficult and strong thrombus and lesions within a blood vessel. Effluent aspiration is controlled by an exhaust regulator in the form of a roller pump, but effluent removal can be assistingly influenced by the fluid pressure associated with the radially directed fluid jet streams.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: March 7, 2017
    Assignee: BOSTON SCIENTIFIC LIMITED
    Inventors: Michael J. Bonnette, Eric J. Thor, Debra M. Kozak, Douglas J. Ball, Richard Prather, David Morris, Stephen E. Weisel
  • Publication number: 20160220346
    Abstract: An intravascular emboli capture and retrieval system for intravascular embolism protection and embolism removal or maceration. Guidewire mounted proximally and distally located multiple opening filters are deployed within the vasculature and used to part, divide and macerate embolic debris and to capture such embolic debris within the confines thereof. A deployable flexible preformed memory shaped capture sleeve is alternatively used to collapse one or more filters and embolic debris therein for subsequent proximal withdrawal from the vasculature.
    Type: Application
    Filed: April 8, 2016
    Publication date: August 4, 2016
    Applicant: Embolitech, LLC
    Inventors: Michael Bonnette, Richard Prather, Eric J. Thor, Stephen E. Weisel, Douglas L. Ball, David B. Morris, Debra M. Kozak, Gary Ansel
  • Publication number: 20140155830
    Abstract: A direct stream hydrodynamic catheter system is provided for the removal of thrombus, lesions and the like including provisions for the infusion of drugs, lysing fluids and the like into a blood vessel. Physician controlled powered direct fluid jet streams emanate from a fluid jet emanatory in the form of robust radially directed fluid jet streams to impinge upon and ablate difficult and strong thrombus and lesions within a blood vessel. Effluent aspiration is controlled by an exhaust regulator in the form of a roller pump, but effluent removal can be assistingly influenced by the fluid pressure associated with the radially directed fluid jet streams.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 5, 2014
    Inventors: MICHAEL J. BONNETTE, ERIC J. THOR, DEBRA M. KOZAK, DOUGLAS J. BALL, RICHARD PRATHER, DAVID MORRIS, STEPHEN E. WEISEL
  • Publication number: 20100268264
    Abstract: An intravascular emboli capture and retrieval system for intravascular embolism protection and embolism removal or maceration. Guidewire mounted proximally and distally located multiple opening filters are deployed within the vasculature and used to part, divide and macerate embolic debris and to capture such embolic debris within the confines thereof. A deployable flexible preformed memory shaped capture sleeve is alternatively used to collapse one or more filters and embolic debris therein for subsequent proximal withdrawal from the vasculature.
    Type: Application
    Filed: October 27, 2008
    Publication date: October 21, 2010
    Applicant: MEDRAD, INC.
    Inventors: Michael Bonnette, Richard Prather, Eric J. Thor, Stephen E. Weisel, Douglas L. Ball, David B. Morris, Debra M. Kozak, Gary Ansel
  • Publication number: 20090128401
    Abstract: A system comprising a moving radar, a processing device, and a phase difference determination device is used to monitor a target. The moving radar has first and second phase centers that transmit and receive signals normal to a direction of movement of the radar. The processing device receives first and second ones of the received signals from the first and second phase centers, respectively, and performs a target motion compensation and target acceleration correction for each of the first and second received signals to produce first and second images. The phase difference determination device determines a phase difference image from a comparison of the first and second images.
    Type: Application
    Filed: December 19, 2007
    Publication date: May 21, 2009
    Applicant: The MITRE Corporation
    Inventors: Richard Prather PERRY, Probal Kumar Sanyal, David Matthew Zasada
  • Publication number: 20090091492
    Abstract: Methods and systems for detecting and mitigating DRFM-based interference in SAR images are provided. Embodiments include methods and systems for detecting and removing DRFM-based interference from SAR images by exploiting multi-channel SAR data. Embodiments provide an Electronic Counter Counter Measure (ECCM) technique that is effective against, among others, SAR DRFM-based repeater jamming, false target images, noise jamming, and vector multiplier jamming for false scene generation. When used, embodiments of the present invention reduce jammer effectiveness to a small range strip (a strip parallel to the range dimension) in the direction of the jammer. In addition, jammer mitigation is performed without losing SAR image data at the affected SAR pixels. Furthermore, embodiments of are compatible with time variable ECCM techniques, including orthogonal waveforms or pulse jitter techniques, for example.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 9, 2009
    Applicant: The MITRE Corporation
    Inventors: Probal Kumar Sanyal, Richard Prather Perry, David Matthew Zasada
  • Patent number: 7488340
    Abstract: A sealing device for sealing punctures in blood vessel walls including a flange connected to a flexible stem having an expansion portion in it. The flexible stem is adapted to be accommodated inside a delivery tube. The delivery tube further includes a hand-hold for ease of handling. The sealing device may further include a loader and a cutter. The flange and flexible stem are preferably constructed of a biodegradable material that has a tensile strength, rigidity, memory and other physical qualities similar to medical grade silicone. The resilient transverse expansion portion expands when deployed beyond the delivery tube in the tissue tract to create a frictional interface with the interior surface of the tissue tract to resist displacement of the flexible stem from a desired location in the tissue tract. The flexible stem also includes a flange at the distal end of the flexible stem to seal the puncture when the flexible stem is deployed.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: February 10, 2009
    Assignee: Vascular Solutions, Inc.
    Inventors: James V. Kauphusman, Howard Root, Richard Prather
  • Publication number: 20070060878
    Abstract: An occlusive guidewire system having an ergonomic handheld control mechanism and torqueable kink-resistant guidewire having a distally located inflatable balloon. The present invention provides convenient structure and overall mechanism for operation of a torqueable kink-resistant guidewire, including evacuation and inflation control of an occlusive balloon, and sealing and severing of a crimpable inflation tube which is in communication with an occlusive balloon. The torqueable kink-resistant guidewire includes a centrally located shaft which imparts robustness to the torqueable kink-resistant guidewire. An inflation lumen aligns within the torqueable kink-resistant guidewire for inflation of the balloon.
    Type: Application
    Filed: September 1, 2005
    Publication date: March 15, 2007
    Inventors: Michael Bonnette, Richard Prather, Eric Thor
  • Publication number: 20070060881
    Abstract: A gas inflation/evacuation system incorporating a multiple element valved guidewire assembly having an occlusive device for use in thrombectomy or other vascular procedures includes a multiple element valved guidewire assembly having an occlusive balloon removably and sealingly connectible to an included manifold assembly where a guidewire tube defines a lumen for inflation or deflation of the occlusive balloon. A first syringe for evacuating the lumen and a second syringe for introducing a biocompatible gas into the lumen to inflate the occlusive balloon that is in fluid communication with the lumen a plurality of times are included. A sealing valve arrangement selectively seals the proximal portion of the guidewire tube to control inflated or deflated states of the occlusive balloon.
    Type: Application
    Filed: September 1, 2005
    Publication date: March 15, 2007
    Inventors: Michael Bonnette, Richard Prather, Eric Thor
  • Publication number: 20060064071
    Abstract: A gas inflation/evacuation system incorporating a reservoir and removably attached sealing system for a guidewire assembly having an occlusive device and method. A gas inflation/evacuation system is removably connectible to a proximal portion of a guidewire assembly where a sealing system interfaces and cooperatively interacts between the gas inflation/evacuation system and the proximal portion of the guidewire assembly to provide for repeated inflation and deflation of an occlusive balloon to provide a hubless guidewire assembly over which ablation and other type catheters can be loaded.
    Type: Application
    Filed: December 10, 2004
    Publication date: March 23, 2006
    Inventors: Michael Bonnette, Eric Thor, Richard Prather, Robert Dutcher
  • Publication number: 20050182437
    Abstract: A guidewire assembly including a repeatably inflatable occlusive balloon on a guidewire ensheathed in a close wound spiral coil. The guidewire assembly is used as part of a guidewire occlusion system.
    Type: Application
    Filed: May 4, 2004
    Publication date: August 18, 2005
    Inventors: Michael Bonnette, Eric Thor, Richard Prather
  • Publication number: 20050020998
    Abstract: A gas inflation/evacuation system and sealing system for use with occlusive devices in vascular procedures. The gas inflation/evacuation system is removably connectable via the sealing system to a proximal portion of a guidewire assembly having a guidewire that defines a lumen and includes a first syringe system for evacuating the lumen and a second syringe system for introducing a biocompatible gas into the lumen to inflate an occlusive balloon that is in fluid communication with the lumen a plurality of times. The sealing system selectively seals the proximal portion of the guidewire and includes a crimping mechanism and a compression sealing mechanism having a resilient seal for sealing around the proximal portion of the guidewire when it is passed therethrough.
    Type: Application
    Filed: May 4, 2004
    Publication date: January 27, 2005
    Inventors: Michael Bonnette, Eric Thor, Richard Prather
  • Publication number: 20040243052
    Abstract: A sealing device for sealing punctures in blood vessel walls including a flange connected to a flexible stem having an expansion portion in it. The flexible stem is adapted to be accommodated inside a delivery tube. The delivery tube further includes a hand-hold for ease of handling. The sealing device may further include a loader and a cutter. The flange and flexible stem are preferably constructed of a biodegradable material that has a tensile strength, rigidity, memory and other physical qualities similar to medical grade silicone. The resilient transverse expansion portion expands when deployed beyond the delivery tube in the tissue tract to create a frictional interface with the interior surface of the tissue tract to resist displacement of the flexible stem from a desired location in the tissue tract. The flexible stem also includes a flange at the distal end of the flexible stem to seal the puncture when the flexible stem is deployed.
    Type: Application
    Filed: June 2, 2003
    Publication date: December 2, 2004
    Applicant: Vascular Solutions, Inc.
    Inventors: James V. Kauphusman, Howard Root, Richard Prather
  • Patent number: 4428897
    Abstract: Particle boards are currently prepared by treating the particles (e.g. wood chips) with a binder comprising an organic polyisocyanate and, optionally, a release agent and then subjecting the treated particles to a molding process involving heat and pressure. The resulting particle board will generally release well from the caul plates of the press after forming. However, it has been found that the ease of release is enhanced, particularly where the wood particles in the board are derived from hardwood, by utilizing a metal selected from magnesium and zinc in the metallic surfaces of the caul plates or platens which come into contact with the particle board during the application of heat and pressure.
    Type: Grant
    Filed: December 23, 1982
    Date of Patent: January 31, 1984
    Assignee: The Upjohn Company
    Inventors: Steven B. Lowenkron, Richard A. Prather, Howard R. Steele
  • Patent number: RE31703
    Abstract: A process is disclosed for the preparation of liquid, storage-stable, polyisocyanate compositions containing a release agent formed in situ which compositions are useful, for example, as binder resins in the formation of particle boards which latter, because of the presence of the release agent, show no tendency to adhere to the face of metal platens used in their formation. The process comprises heating an organic polyisocyanate (polymethylene polyphenyl polyisocyanate preferred) with an acid phosphate (e.g. a mixture of mono- and di-alkyl acid phosphates) under conditions controlled as to time and temperature so as to yield a product which is storage stable and shows no tendency to deposit solid or to separate into two liquid phases.
    Type: Grant
    Filed: August 2, 1982
    Date of Patent: October 9, 1984
    Assignee: The Upjohn Company
    Inventors: Richard A. Prather, David L. Williams, Robert M. Partin, Warren J. Rabourn, deceased