Patents by Inventor Richard A. Willyard

Richard A. Willyard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140276200
    Abstract: A method of treating tissue including displaying a path to a point of interest within a luminal network, navigating a locatable guide to the point of interest following the displayed path, and deploying one or more fiducial markers proximate the point of interest. The method also including percutaneously inserting a microwave ablation device into the point of interest and ablating the tissue at the point of interest.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Covidien LP
    Inventors: Joseph D. Brannan, Casey M. Ladtkow, Darion R. Peterson, Eric W. Larson, William J. Dickhans, Richard A. Willyard, Jason A. Case
  • Publication number: 20140276739
    Abstract: A microwave ablation device including a cable assembly configured to connect a microwave ablation device to an energy source and a feedline in electrical communication with the cable assembly. The microwave ablation device further includes a balun on an outer conductor of the feedline, and a temperature sensor on the balun sensing the temperature of the balun.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: COVIDIEN LP
    Inventors: Joseph D. Brannan, Casey M. Ladtkow, Darion R. Peterson, Eric W. Larson, William J. Dickhans, Richard A. Willyard, Jason A. Case
  • Publication number: 20140259641
    Abstract: A method of manufacturing a microwave ablation device, the method including applying a balun short circumferentially about an outer conductor of a coaxial feedline and applying a dielectric material circumferentially about the outer conductor of the coaxial feedline and in contact with the balun short to form a balun. The method further including extending a temperature sensor along the coaxial feedline such that the sensor contacts the balun short, securing the temperature sensor to the coaxial feedline with a first heat shrink material, and securing the dielectric material, balun short, and temperature sensor in contact with each other and to the coaxial feedline using a second heat shrink material.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Joseph D. Brannan, Casey M. Ladtkow, Darion R. Peterson, Eric W. Larson, William J. Dickhans, Richard A. Willyard, Jason A. Case
  • Publication number: 20140276033
    Abstract: An ablation system including an image database storing a plurality of computed tomography (CT) images of a luminal network and a navigation system enabling, in combination with an endoscope and the CT images, navigation of a locatable guide and an extended working channel to a point of interest. The system further includes one or more fiducial markers, placed in proximity to the point of interest and a percutaneous microwave ablation device for applying energy to the point of interest.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: COVIDIEN LP
    Inventors: Joseph D. Brannan, Casey M. Ladtkow, Darion R. Peterson, Eric W. Larson, William J. Dickhans, Richard A. Willyard, Jason A. Case
  • Patent number: 8795268
    Abstract: According to one aspect of the present disclosure, a microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween and a radiating portion including a dipole antenna having a proximal portion and a distal portion. The antenna assembly also comprises a sheath disposed over the feedline and the radiating portion defining a chamber around the feedline and the radiating portion. The chamber is adapted to circulate coolant fluid therethrough. The antenna assembly further includes a connection hub having cable connector coupled to the feedline, an inlet fluid port and an outlet fluid port. The connection hub includes a bypass tube configured to provide for flow of the coolant fluid from the cable connector directly to the outlet fluid port.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: August 5, 2014
    Assignee: Covidien LP
    Inventor: Richard A. Willyard
  • Publication number: 20140012250
    Abstract: According to one aspect of the present disclosure, a microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween and a radiating portion including a dipole antenna having a proximal portion and a distal portion. The antenna assembly also comprises a sheath disposed over the feedline and the radiating portion defining a chamber around the feedline and the radiating portion. The chamber is adapted to circulate coolant fluid therethrough. The antenna assembly further includes a connection hub having cable connector coupled to the feedline, an inlet fluid port and an outlet fluid port. The connection hub includes a bypass tube configured to provide for flow of the coolant fluid from the cable connector directly to the outlet fluid port.
    Type: Application
    Filed: August 30, 2013
    Publication date: January 9, 2014
    Applicant: COVIDIEN LP
    Inventor: RICHARD A. WILLYARD
  • Publication number: 20140005657
    Abstract: A surgical probe includes a connection hub, an antenna assembly, and an outer jacket. The antenna assembly is coupled to the connection hub, extends distally from the connection hub, and includes a radiating portion coupled thereto at the distal end thereof. The radiating portion is configured to deliver energy to tissue to treat tissue. The outer jacket is coupled to the connection hub, extends distally therefrom, and is disposed about the radiating portion. The outer jacket includes a distal end member configured to be spaced-apart from the radiating portion a target axial distance. One or more of the couplings between the antenna assembly and the connection hub, the radiating portion and the antenna assembly, and the outer jacket and the connection hub defines a flexible configuration permitting axial movement therebetween to maintain the target axial distance between the radiating portion and the distal end member.
    Type: Application
    Filed: June 3, 2013
    Publication date: January 2, 2014
    Inventors: JOSEPH D. BRANNAN, WILLIAM O. REID, JR., DARION R. PETERSON, KAYLEN J. HALEY, RICHARD A. WILLYARD, KENLYN S. BONN
  • Publication number: 20140000098
    Abstract: A method of manufacturing a surgical instrument includes charging a first component to a first voltage, charging a second component to a second voltage such that a pre-determined voltage differential is established between the first and second components, axially moving at least one of the first and second components relative to the other, monitoring an electrical characteristic to determine whether an axial distance between the first and second components is equal to a target axial distance, and retaining the first and second components in fixed position relative to one another once the axial distance between the first and second components is equal to the target axial distance.
    Type: Application
    Filed: June 3, 2013
    Publication date: January 2, 2014
    Inventors: JAMES E. DUNNING, JOSEPH D. BRANNAN, WILLIAM O. REID, JR., DARION R. PETERSON, KAYLEN J. HALEY, RICHARD A. WILLYARD, KENLYN S. BONN
  • Publication number: 20130267946
    Abstract: An electrosurgical system includes an electrosurgical device, one or more temperature sensors associated with the electrosurgical device, a fluid-flow path leading to the electrosurgical device, and a flow-control device disposed in fluid communication with the fluid-flow path. The electrosurgical device includes a probe for directing energy to tissue. The electrosurgical system includes circuitry for detecting bending of the probe. The circuitry alerts the user of excessive bending by activating an alarm, such as an audible alarm, lighting one or more LEDs or other light sources, tactile feedback, or any other means. The electrosurgical system further includes a processor unit communicatively-coupled to the one or more temperature sensors and communicatively-coupled to the flow-control device. The processor unit is configured to control the flow-control device based on determination of a desired fluid-flow rate using one or more electrical signals outputted from the one or more temperature sensors.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 10, 2013
    Applicant: VIVANT MEDICAL, INC.
    Inventors: JOSEPH D. BRANNAN, RICHARD A. WILLYARD
  • Patent number: 8545493
    Abstract: A microwave ablation system includes a generator operable to output energy and an ablation probe coupled to the generator that delivers the energy to a tissue region. The ablation system also includes a controller operable to control the generator and at least one sensor coupled to the ablation probe and the controller that detects an operating parameter of the ablation probe. The controller performs a system check by ramping up an energy output of the generator from a low energy level to a high energy level and monitors an output from the sensor at predetermined intervals of time during the system check to determine an abnormal state. The controller controls the generator to cease the energy output when the controller determines an abnormal state.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: October 1, 2013
    Assignee: Covidien LP
    Inventors: Joseph D. Brannan, Darion Peterson, Kenlyn S. Bonn, Richard A. Willyard
  • Patent number: 8523854
    Abstract: According to one aspect of the present disclosure, a microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween and a radiating portion including a dipole antenna having a proximal portion and a distal portion. The antenna assembly also comprises a sheath disposed over the feedline and the radiating portion defining a chamber around the feedline and the radiating portion. The chamber is adapted to circulate coolant fluid therethrough. The antenna assembly further includes a connection hub having cable connector coupled to the feedline, an inlet fluid port and an outlet fluid port. The connection hub includes a bypass tube configured to provide for flow of the coolant fluid from the cable connector directly to the outlet fluid port.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 3, 2013
    Assignee: Covidien LP
    Inventor: Richard A. Willyard
  • Patent number: 8394087
    Abstract: An electrosurgical system includes an electrosurgical device adapted to direct energy to tissue and a fluid path leading to the electrosurgical device. The system also includes an optical sensor unit operably associated with the fluid path. The optical sensor unit includes a light-emitting element to generate light output and a light-receiving element to collect light outputted from the light-emitting element. The light-emitting element and the light-receiving element are disposed such that light output from the light-emitting element passes through the fluid path to the light-receiving element. The optical sensor unit is capable of detecting an air bubble in the fluid path passing through the optical sensor unit using a sensed characteristic of light collected at the light-receiving element.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: March 12, 2013
    Assignee: Vivant Medical, Inc.
    Inventors: Richard A. Willyard, Joseph D. Brannan
  • Publication number: 20120330302
    Abstract: According to one aspect of the present disclosure, a microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween and a radiating portion including a dipole antenna having a proximal portion and a distal portion. The antenna assembly also comprises a sheath disposed over the feedline and the radiating portion defining a chamber around the feedline and the radiating portion. The chamber is adapted to circulate coolant fluid therethrough. The antenna assembly further includes a connection hub having cable connector coupled to the feedline, an inlet fluid port and an outlet fluid port. The connection hub includes a bypass tube configured to provide for flow of the coolant fluid from the cable connector directly to the outlet fluid port.
    Type: Application
    Filed: August 28, 2012
    Publication date: December 27, 2012
    Applicant: VIVANT MEDICAL, INC.
    Inventor: Richard A. Willyard
  • Publication number: 20120303018
    Abstract: A tissue dissector is provided. The tissue dissector includes an introducer including a lumen extending along a length thereof and defining a longitudinal axis therethrough. The introducer configured for placement adjacent target tissue. A shaft operably coupled to the introducer is deployable from a distal end thereof and includes a proximal end for approximating the distal end of the shaft adjacent target tissue. The distal end of the shaft is movable from a non-expanded configuration to an expanded configuration for separating target tissue from neighboring tissue.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 29, 2012
    Applicant: TYCO Healthcare Group LP
    Inventors: Casey M. Ladtkow, Joseph D. Brannan, Kaylen J. Haley, Richard A. Willyard
  • Publication number: 20120232544
    Abstract: A method of directing energy to tissue using a fluid-cooled antenna assembly includes the initial step of providing an energy applicator. The energy applicator includes an antenna assembly and a hub providing at least one coolant connection to the energy applicator. The method also includes the steps of providing a coolant supply system including a fluid-flow path fluidly-coupled to the hub for providing fluid flow to the energy applicator, positioning the energy applicator in tissue for the delivery of energy to tissue when the antenna assembly is energized, and providing a thermal-feedback-controlled rate of fluid flow to the antenna assembly when energized using a feedback control system operably-coupled to a flow-control device disposed in fluid communication with the fluid-flow path.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: Vivant Medical, Inc.
    Inventors: Richard A. Willyard, Joseph D. Brannan
  • Publication number: 20120232549
    Abstract: An electrosurgical system includes an electrosurgical device adapted to direct energy to tissue, one or more temperature sensors associated with the electrosurgical device, a fluid-flow path leading to the electrosurgical device, and a flow-control device disposed in fluid communication with the fluid-flow path. The system also includes a processor unit communicatively-coupled to the one or more temperature sensors and communicatively-coupled to the flow-control device. The processor unit is configured to control the flow-control device based on determination of a desired fluid-flow rate using one or more electrical signals outputted from the one or more temperature sensors.
    Type: Application
    Filed: March 9, 2011
    Publication date: September 13, 2012
    Applicant: Vivant Medical, Inc.
    Inventors: Richard A. Willyard, Joseph D. Brannan
  • Patent number: 8251987
    Abstract: According to one aspect of the present disclosure, a microwave antenna assembly is disclosed. The antenna assembly includes a feedline having an inner conductor, an outer conductor and an inner insulator disposed therebetween and a radiating portion including a dipole antenna having a proximal portion and a distal portion. The antenna assembly also comprises a sheath disposed over the feedline and the radiating portion defining a chamber around the feedline and the radiating portion. The chamber is adapted to circulate coolant fluid therethrough. The antenna assembly further includes a connection hub having cable connector coupled to the feedline, an inlet fluid port and an outlet fluid port. The connection hub includes a bypass tube configured to provide for flow of the coolant fluid from the cable connector directly to the outlet fluid port.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: August 28, 2012
    Assignee: Vivant Medical, Inc.
    Inventor: Richard A. Willyard
  • Publication number: 20120203220
    Abstract: A tissue dissector is provided. The tissue dissector includes a cannula and an introducer coaxially coupled to the cannula and movable therein from a retracted position to an extended position. An introducer is coaxially coupleable to the cannula and movable therein from a retracted position to an extended position. The introducer including a generally annular lumen disposed in fluid communication with an inflation port operably disposed on the introducer and in fluid communication with an inflatable balloon that couples to the introducer. The inflatable balloon is movable from a deflated condition for positioning the introducer adjacent target tissue, to an inflated condition for separating the target tissue from nearby tissue and for providing a barrier therebetween such that the nearby tissue is not affected during the electrosurgical procedure.
    Type: Application
    Filed: February 9, 2011
    Publication date: August 9, 2012
    Applicant: Vivant Medical, Inc.
    Inventors: Joseph D. Brannan, Kaylen J. Haley, Casey M. Ladtkow, Richard A. Willyard
  • Publication number: 20110295245
    Abstract: A microwave ablation system includes an antenna assembly configured to deliver microwave energy from an energy source to tissue and a coolant source operably coupled to the energy source and configured to selectively provide fluid to the antenna assembly via a fluid path. The system also includes a controller operably coupled to the energy source and a piezoelectric transducer operably coupled to the fluid path to detect a force of fluid flow through the fluid path. The piezoelectric transducer is configured to generate a signal based on the detected force of fluid through the fluid path. The controller is configured to control the energy source output based on the generated signal.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 1, 2011
    Inventors: Richard A. Willyard, Joseph D. Brannan
  • Publication number: 20110077639
    Abstract: A microwave ablation system includes a generator operable to output energy and an ablation probe coupled to the generator that delivers the energy to a tissue region. The ablation system also includes a controller operable to control the generator and at least one sensor coupled to the ablation probe and the controller that detects an operating parameter of the ablation probe. The controller performs a system check by ramping up an energy output of the generator from a low energy level to a high energy level and monitors an output from the sensor at predetermined intervals of time during the system check to determine an abnormal state. The controller controls the generator to cease the energy output when the controller determines an abnormal state.
    Type: Application
    Filed: September 29, 2009
    Publication date: March 31, 2011
    Inventors: Joseph D. Brannan, Darion Peterson, Kenlyn S. Bonn, Richard A. Willyard