Patents by Inventor Richard Alan Proeschel

Richard Alan Proeschel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8858223
    Abstract: A Glycerin Fueled Afterburning Engine utilizes the power generation unit exhaust heat to pre-heat the glycerin, or similar difficult to combust fuel, and then utilizes regenerative burner heating to fully vaporize and superheat the fuel above the auto ignition temperature. The combustion inlet air is also highly preheated by the recuperative power generation cycle. The actual combustion process is then accomplished by hypergolic ignition from mixing the hot vapor with the hot air. The overall engine process operates on a cycle of (1) air compression, (2) indirect heating of air in an air heater, (3) air expansion, (4) air heating by combustion, and (5) air cooling by heat transfer to the incoming compressed air charge in the recuperator.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: October 14, 2014
    Assignee: Proe Power Systems, LLC
    Inventor: Richard Alan Proeschel
  • Publication number: 20100218930
    Abstract: The present invention generally relates to various types and/or structures of heat exchangers and to methods of making and/or using such heat exchangers. In one embodiment, the present invention relates to a system and method for constructing a microchannel gas-to-working fluid heat exchanger. In another embodiment, there is disclosed a power generation cycle that employs a heat exchanger that serves as a regenerative heat exchanger.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 2, 2010
    Inventor: Richard Alan Proeschel
  • Patent number: 7028476
    Abstract: The invention is a positive displacement heat engine; where the engine cycle comprises the steps of Ericsson (isothermal) compression, recuperative heat addition, Brayton (adiabatic) expansion, and recuperative heat removal; whose principle is heat addition to the cycle by an afterburner in which fuel is burned with the low pressure air working fluid exhausted by the expander. The resulting combustion gases are used in a counterflow heat exchange recuperator to continually heat the high pressure air compressed by the compressor. All moving parts are only exposed to clean air, and the expander valves can be operated at temperatures comparable to current internal combustion engines. Liquid, solid or gaseous fuels can be used and control of speed and power is simple, based on keeping engine temperatures constant. The low-pressure continuous combustion avoids fuel pressurization problems and allows high efficiency, low emission combustion processes.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: April 18, 2006
    Assignee: Proe Power Systems, LLC
    Inventor: Richard Alan Proeschel
  • Patent number: 6672063
    Abstract: The invention is a reciprocating bottom cycle engine whose principal is heat addition by recovering heat from a top cycle engine through a counterflow heat exchange recuperator. The engine operation approximates the ideal bottom cycle for recovering heat from a top cycle: isothermal compression, recuperative heating, and constant entropy expansion. Such a cycle is capable of utilizing all the work potential between the hot top cycle exhaust and cool ambient temperature. Practical engines operating on this cycle do not achieve the ideal performance but are superior to Stirling or Ericsson Cycle engines in the amount of exhaust heat that can be converted to mechanical work and have been shown to be capable of enabling a typical natural gas fired engine to produce 17% more power from the same amount of fuel. All moving parts are lightly loaded and are only exposed to clean air, thus assuring long engine life with minimal maintenance.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: January 6, 2004
    Inventor: Richard Alan Proeschel