Patents by Inventor Richard Allen Bailey

Richard Allen Bailey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11495607
    Abstract: Curing of a passivation layer applied to the surface of a ferroelectric integrated circuit so as to enhance the polarization characteristics of the ferroelectric structures. A passivation layer, such as a polyimide, is applied to the surface of the ferroelectric integrated circuit after fabrication of the active devices. The passivation layer is cured by exposure to a high temperature, below the Curie temperature of the ferroelectric material, for a short duration such as on the order of ten minutes. Variable frequency microwave energy may be used to effect such curing. The cured passivation layer attains a tensile stress state, and as a result imparts a compressive stress upon the underlying ferroelectric material. Polarization may be further enhanced by polarizing the ferroelectric material prior to the cure process.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: November 8, 2022
    Assignee: Texas Instruments Incorporated
    Inventors: Huang-Chun Wen, Richard Allen Bailey, Antonio Guillermo Acosta, John A. Rodriguez, Scott Robert Summerfelt, Kemal Tamer San
  • Patent number: 10424361
    Abstract: A method of generating a random number from an electronic circuit memory and/or a system with the electronic circuit memory. The memory comprises a block of ferroelectric two transistor, two capacitor (2T-2C), memory cells. The method comprises: (i) first, writing a predetermined programming pattern to the block cells in a one transistor, one-capacitor (1T-1C) mode, thusly writing, per cell, a same data state to both a first and second sub-cell of the cell; (ii) second, reading the cells in a 2T-2C mode to generate a random number comprising a random bit from each of the cells; (iii) third, restoring the random number into the cells in a 2T-2C mode, thusly writing, per cell, a complementary data state to both a first and second sub-cell of the cell, responsive to a respective random number bit; and fourth, imprinting the random number in each cell in the block.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: September 24, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: John Anthony Rodriguez, Richard Allen Bailey
  • Publication number: 20190252016
    Abstract: A method of generating a random number from an electronic circuit memory and/or a system with the electronic circuit memory. The memory comprises a block of ferroelectric two transistor, two capacitor (2T-2C), memory cells. The method comprises: (i) first, writing a predetermined programming pattern to the block cells in a one transistor, one-capacitor (1T-1C) mode, thusly writing, per cell, a same data state to both a first and second sub-cell of the cell; (ii) second, reading the cells in a 2T-2C mode to generate a random number comprising a random bit from each of the cells; (iii) third, restoring the random number into the cells in a 2T-2C mode, thusly writing, per cell, a complementary data state to both a first and second sub-cell of the cell, responsive to a respective random number bit; and fourth, imprinting the random number in each cell in the block.
    Type: Application
    Filed: April 30, 2018
    Publication date: August 15, 2019
    Inventors: John Anthony Rodriguez, Richard Allen Bailey
  • Publication number: 20180374861
    Abstract: Curing of a passivation layer applied to the surface of a ferroelectric integrated circuit so as to enhance the polarization characteristics of the ferroelectric structures. A passivation layer, such as a polyimide, is applied to the surface of the ferroelectric integrated circuit after fabrication of the active devices. The passivation layer is cured by exposure to a high temperature, below the Curie temperature of the ferroelectric material, for a short duration such as on the order of ten minutes. Variable frequency microwave energy may be used to effect such curing. The cured passivation layer attains a tensile stress state, and as a result imparts a compressive stress upon the underlying ferroelectric material. Polarization may be further enhanced by polarizing the ferroelectric material prior to the cure process.
    Type: Application
    Filed: August 7, 2018
    Publication date: December 27, 2018
    Inventors: Huang-Chun Wen, Richard Allen Bailey, Antonio Guillemo Acosta, John A. Rodriguez, Scott Robert Summerfelt, Kemal Tamer San
  • Patent number: 10153053
    Abstract: A fuse-programmable register or memory location having a plurality of fusible links of differing electrical characteristics in parallel. In one embodiment, three fusible links with different resistances are provided, such that application of a programming voltage non-uniformly distributes the current among the links, allowing varying voltages to selectively blow one or more of the links. Sensing of the programmed state is performed by applying a voltage across the parallel links and measuring the current in comparison with a plurality of reference currents. Reduction in the overhead chip area per bit and in the serial data communication latency are obtained.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: December 11, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sunil Kumar Dusa, Richard Allen Bailey, Archana Venugopal, John Anthony Rodriguez, Michael Allen Ball
  • Publication number: 20180040381
    Abstract: A fuse-programmable register or memory location having a plurality of fusible links of differing electrical characteristics in parallel. In one embodiment, three fusible links with different resistances are provided, such that application of a programming voltage non-uniformly distributes the current among the links, allowing varying voltages to selectively blow one or more of the links. Sensing of the programmed state is performed by applying a voltage across the parallel links and measuring the current in comparison with a plurality of reference currents. Reduction in the overhead chip area per bit and in the serial data communication latency are obtained.
    Type: Application
    Filed: October 19, 2017
    Publication date: February 8, 2018
    Inventors: Sunil Kumar Dusa, Richard Allen Bailey, Archana Venugopal, John Anthony Rodriguez, Michael Allen Ball
  • Patent number: 9824769
    Abstract: A fuse-programmable register or memory location having a plurality of fusible links of differing electrical characteristics in parallel. In one embodiment, three fusible links with different resistances are provided, such that application of a programming voltage non-uniformly distributes the current among the links, allowing varying voltages to selectively blow one or more of the links. Sensing of the programmed state is performed by applying a voltage across the parallel links and measuring the current in comparison with a plurality of reference currents. Reduction in the overhead chip area per bit and in the serial data communication latency are obtained.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: November 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sunil Kumar Dusa, Richard Allen Bailey, Archana Venugopal, John Anthony Rodriguez, Michael Allen Ball
  • Publication number: 20170018311
    Abstract: A fuse-programmable register or memory location having a plurality of fusible links of differing electrical characteristics in parallel. In one embodiment, three fusible links with different resistances are provided, such that application of a programming voltage non-uniformly distributes the current among the links, allowing varying voltages to selectively blow one or more of the links. Sensing of the programmed state is performed by applying a voltage across the parallel links and measuring the current in comparison with a plurality of reference currents. Reduction in the overhead chip area per bit and in the serial data communication latency are obtained.
    Type: Application
    Filed: May 4, 2016
    Publication date: January 19, 2017
    Inventors: Sunil Kumar Dusa, Richard Allen Bailey, Archana Venugopal, John Anthony Rodriguez, Michael Allen Ball
  • Publication number: 20160086960
    Abstract: Curing of a passivation layer applied to the surface of a ferroelectric integrated circuit so as to enhance the polarization characteristics of the ferroelectric structures. A passivation layer, such as a polyimide, is applied to the surface of the ferroelectric integrated circuit after fabrication of the active devices. The passivation layer is cured by exposure to a high temperature, below the Curie temperature of the ferroelectric material, for a short duration such as on the order of ten minutes. Variable frequency microwave energy may be used to effect such curing. The cured passivation layer attains a tensile stress state, and as a result imparts a compressive stress upon the underlying ferroelectric material. Polarization may be further enhanced by polarizing the ferroelectric material prior to the cure process.
    Type: Application
    Filed: June 2, 2015
    Publication date: March 24, 2016
    Inventors: Huang-Chun Wen, Richard Allen Bailey, Antonio Guillermo Acosta, John A. Rodriguez, Scott Robert Summerfelt, Kemal Tamer San
  • Patent number: 7149137
    Abstract: The present invention facilitates evaluation of ferroelectric memory devices. A ferroelectric memory device is fabricated that comprises memory cells comprising ferroelectric capacitors (802). A short delay polarization value is obtained (804) by writing a data value, performing a short delay, and reading the data value. A long delay polarization value is obtained (806) by again writing the data value, performing a long delay, and again reading the data value. The short delay and long delay polarization values are compared (808) to obtain a data retention lifetime for the ferroelectric memory device. The obtained data retention lifetime is compared with acceptable values (810) and, if deemed unacceptable, avoids unnecessary performance of thermal bake data retention lifetime testing.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: December 12, 2006
    Assignee: Texas Instruments Incorporated
    Inventors: John Anthony Rodriguez, Richard Allen Bailey