Patents by Inventor Richard Andrew Wall

Richard Andrew Wall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10088689
    Abstract: An optical light engine includes a pair of lenticular microlenslet arrays (MLAs) located on each side of a polarization converter. Non-polarized light from a source in the engine is focused by the first MLA onto cells of the polarization converter which converts the light to a common state of polarization to increase efficiency and improve contrast in the system. A half wave retarder is included on the polarization converter to change the polarization of any light that is reflected from downstream optical components to match that of the forward propagating light. The second MLA, which includes a relatively large number of microlenslet elements, collects the light from the polarization converter and homogenizes the light to be highly uniform when received at a downstream imaging panel in the light engine such as a liquid crystal on silicon (LCOS) panel.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: October 2, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Yarn Chee Poon, Steve Robbins, Angus Wu, Jeb Wu, James Webster, Richard Andrew Wall, Richard James, Robin Hsiung, RuPing Huang, Freeway Lin
  • Patent number: 10025093
    Abstract: A near eye or heads up display system includes a scan beam projector engine, an optical waveguide, and an exit pupil expander (EPE) optically coupled between the scan beam projector engine and the optical waveguide. The EPE improves the optical performance of the display system. The EPE could include a diffusive optical element, diffractive optical element, micro-lens array (MLA), or relay of aspherical lenses. A dual MLA EPE may have cells that prevent cross-talk between adjacent pixels. A dual MLA EPE may have a non-periodic lens array. The optical power of one MLA may be different from the other MLA.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: July 17, 2018
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Richard Andrew Wall, Tuomas Vallius, Mikko Juhola
  • Publication number: 20180113309
    Abstract: An input-coupler of an optical waveguide includes one or more Bragg polarization gratings for coupling light corresponding to the image in two different directions into the optical waveguide. The input-coupler splits the FOV of the image coupled into the optical waveguide into first and second portions by diffracting a portion of the light corresponding to the image in a first direction toward a first intermediate component, and diffracting a portion of the light corresponding to the image in a second direction toward a second intermediate component. An output-coupler of the waveguide combines the light corresponding to the first and second portions of the FOV, and couples the light corresponding to the combined first and second portions of the FOV out of the optical waveguide so that the light corresponding to the image and the combined first and second portions of the FOV is output from the optical waveguide.
    Type: Application
    Filed: February 22, 2017
    Publication date: April 26, 2018
    Inventors: Steven John Robbins, Joshua Owen Miller, Richard Andrew Wall, Eliezer Glik, Jani Kari Tapio Tervo, Bernard Kress, Xinye Lou
  • Publication number: 20180052326
    Abstract: An augmented reality display system utilized in computing platforms such as wearable head-mounted display (HMD) devices includes a virtual reality display that is located in front of a user's eyes to provide a direct view of virtual world images. An optical periscope, comprising reflective or diffractive optical systems, is configured to provide an indirect view of the real world. By locating the virtual reality display (and its associated optical and electrical components) close to the user's eyes and within the user's direct line of sight, the field of view (FOV) of the virtual world is increased as compared with conventional indirect-view virtual reality displays. The optical periscope provides an FOV of the real world that would otherwise be obstructed by the positioning of the direct-view virtual reality display in front of the user's eyes.
    Type: Application
    Filed: August 22, 2016
    Publication date: February 22, 2018
    Inventors: Richard Andrew Wall, Bernard Charles Kress
  • Publication number: 20170299860
    Abstract: A near eye or heads up display system includes a scan beam projector engine, an optical waveguide, and an exit pupil expander (EPE) optically coupled between the scan beam projector engine and the optical waveguide. The EPE improves the optical performance of the display system. The EPE could include a diffusive optical element, diffractive optical element, micro-lens array (MLA), or relay of aspherical lenses. A dual MLA EPE may have cells that prevent cross-talk between adjacent pixels. A dual MLA EPE may have a non-periodic lens array. The optical power of one MLA may be different from the other MLA.
    Type: Application
    Filed: April 13, 2016
    Publication date: October 19, 2017
    Inventors: Richard Andrew Wall, Tuomas Vallius, Mikko Juhola
  • Publication number: 20170242249
    Abstract: A waveguide-based pupil relay for an optical system can comprise a light-transmissive substrate that includes a plurality of internally reflective surfaces to enable light rays of a plurality of different colors to propagate through the substrate by total internal reflection. The pupil relay can further include an input surface to input light rays of the plurality of different colors through an entry pupil of the optical waveguide, and an output surface to output light rays of the plurality of different colors from the substrate through an exit pupil of the optical waveguide. The pupil relay can have optical properties such that the entry pupil and exit pupil have substantially identical size and shape and such that the input light rays and output light rays have substantially identical chromatic properties.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 24, 2017
    Inventors: Richard Andrew Wall, Tuomas Heikki Sakari Vallius
  • Publication number: 20170176747
    Abstract: Disclosed are an apparatus and method for increasing the FOV of displayed images in a head-mounted display (HMD) device. A display apparatus comprises a display module and a waveguide optically coupled to the display module. The display module may generate individually multiple different portions of an image, to be conveyed to an optical receptor of a user of the HMD device, and may include multiple optical output ports, each to output a different portion of the image. The waveguide may include multiple optical input ports, each optically coupled to a different one of the optical output ports of the display module, where the waveguide is configured to output, to the optical receptor of the user, light corresponding to the image in its entirety.
    Type: Application
    Filed: December 21, 2015
    Publication date: June 22, 2017
    Inventors: Tuomas Heikki Sakari Vallius, Richard Andrew Wall, Pasi Petteri Pietilä, Yarn Chee Poon, Ian Anh Nguyen, Jeb Wu
  • Publication number: 20160266398
    Abstract: An optical light engine includes a pair of lenticular microlenslet arrays (MLAs) located on each side of a polarization converter. Non-polarized light from a source in the engine is focused by the first MLA onto cells of the polarization converter which converts the light to a common state of polarization to increase efficiency and improve contrast in the system. A half wave retarder is included on the polarization converter to change the polarization of any light that is reflected from downstream optical components to match that of the forward propagating light. The second MLA, which includes a relatively large number of microlenslet elements, collects the light from the polarization converter and homogenizes the light to be highly uniform when received at a downstream imaging panel in the light engine such as a liquid crystal on silicon (LCOS) panel.
    Type: Application
    Filed: March 13, 2015
    Publication date: September 15, 2016
    Inventors: Yarn Chee Poon, Steve Robbins, Angus Wu, Jeb Wu, James Webster, Richard Andrew Wall, Richard James, Robin Hsiung, RuPing Huang, Freeway Lin