Patents by Inventor Richard B. Gregory

Richard B. Gregory has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 4755865
    Abstract: Implantation of oxygen or nitrogen in polysilicon layers to a dose above about 10.sup.15 ions/cm.sup.2 retards rapid grain boundary migration of conventional dopants such as B, P, As, Sb, and the like during dopant activation. Pre-annealing of the poly films to increase the grain size also decreases rapid grain boundary migration. The effects can be combined by first pre-annealing and then implanting oxygen or nitrogen before introducing the dopant. It is desirable to anneal the oxygen implant before introducing the dopant to allow for oxygen diffusion to the grain surfaces where it precipitates and blocks the grain boundaries. Vertical and lateral migration of the dopants can be inhibited by placing the implanted oxygen or nitrogen between the dopant and the location desired to be kept comparatively free of dopants. When very high dopant activation temperatures are used the blocking effect of the oxygen on the grain boundaries is overwhelmed by dopant diffusion through the grains.
    Type: Grant
    Filed: April 9, 1987
    Date of Patent: July 5, 1988
    Assignee: Motorola Inc.
    Inventors: Syd. R. Wilson, Richard B. Gregory, Charles J. Varker
  • Patent number: 4740481
    Abstract: Hillock formation as a result of heating uncapped polycrystalline silicon layers can be avoided by first implanting the uncapped poly layers with silicon, oxygen, or nitrogen prior to heating. Equivalent mono-atomic oxygen or nitrogen doses in the range of about 10.sup.15 to about 5.times.10.sup.16 ions/cm.sup.2 at energies in the range 10-50 keV are useful with good results being obtained with equivalent oxygen doses of 2.times.10.sup.15 ions/cm.sup.2 at 30 keV. When polysilicon layers with this oxygen implant are heated to about 1150 degrees C., a temperature which would ordinarily produce pronounced hillock formation in un-capped, un-treated poly layers, it is found that hillock formation is suppressed. The implanted oxygen concentrations are far below what is required to produce a separate oxide layer or phase. Some effect on poly layer sheet resistance is observed for implanted oxygen but the implanted layers have sheet resistances within a factor of two of those without the oxygen implants.
    Type: Grant
    Filed: January 21, 1986
    Date of Patent: April 26, 1988
    Assignee: Motorola Inc.
    Inventors: Syd R. Wilson, Richard B. Gregory, Charles J. Varker
  • Patent number: 4682407
    Abstract: Implantation of oxygen or nitrogen in polysilicon layers to a dose above about 10.sup.15 ions/cm.sup.2 retards rapid grain boundary migration of conventional dopants such as B, P, As, Sb, and the like during dopant activation. Pre-annealing of the poly films to increase the grain size also decreases rapid grain boundary migration. The efffects can be combined by first pre-annealing and then implanting oxygen or nitrogen before introducing the dopant. It is desirable to anneal the oxygen implant before introducing the dopant to allow for oxygen diffusion to the grain surfaces where is precipitates and blocks the grain boundaries. Vertical and lateral migration of the dopants can be inhibited by placing the implanted oxygen or nitrogen between the dopant and the location desired to be kept comparatively free of dopants. When very high dopant activation temperatures are used the blocking effect of the oxygen on the grain boundaries is overwhelmed by dopant diffusion through the grains.
    Type: Grant
    Filed: January 21, 1986
    Date of Patent: July 28, 1987
    Assignee: Motorola, Inc.
    Inventors: Syd R. Wilson, Richard B. Gregory, Charles J. Varker