Patents by Inventor Richard B. Jess

Richard B. Jess has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9810217
    Abstract: A vehicle and a method of reducing sound produced by a liquid fluid pump are disclosed. A pump is activated when a predetermined event is detected. A control valve of the pump is operated in one of an initial and a standard mode when the pump is activated. The control valve is operable to allow a gaseous fluid to vent out of the pump when in the initial mode corresponding to the pump being in a first phase. The control valve is operable to allow a liquid fluid to move through the pump when in the standard mode corresponding to the pump being in a second phase. A solenoid of the control valve is energized and de-energized, at a calibrated frequency, in a sequence when in the initial mode to reduce the sound in the pump during the initial mode.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: November 7, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Bryan K. Pryor, Bruce A. Tucker, Karl R. Gilgenbach, Richard B. Jess
  • Patent number: 9475388
    Abstract: An engine control system for a vehicle comprises a torque module and a drag request evaluation module. The torque module controls torque output of an engine based on a driver torque request and increases the torque output based on a wheel drag torque request generated based on a driven wheel speed. The drag request evaluation module disables the increase of the torque output when the driven wheel speed is greater than an undriven wheel speed by more than a predetermined speed.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: October 25, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Richard B. Jess, Michael L. Kociba, Joseph M. Stempnik, James L. Worthing, Katie C. Bonasse
  • Patent number: 9090245
    Abstract: A system according to the principles of the present disclosure includes an axle torque determination module, an engine torque determination module, a torque security module, and an engine torque control module. The axle torque determination module determines an axle torque request based on a driver input and a vehicle speed. The engine torque determination module determines an engine torque request based on the axle torque request and at least one of a first turbine speed and whether a clutch of a torque converter is applied. The torque security module determines a secured torque request based on at least one of the driver input, the vehicle speed, and an engine speed. The engine torque control module controls an amount of torque produced by an engine based on one of the engine torque request and the secured torque request.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: July 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael Livshiz, Ryan Z. Goode, Richard B. Jess, Michael L. Waterman, Ronald F. Lochocki, Jr.
  • Patent number: 9057333
    Abstract: A system according to the principles of the present disclosure includes an axle torque determination module, an engine torque determination module, and an engine torque control module. The axle torque determination module determines an axle torque request based on a driver input and a vehicle speed. The engine torque determination module determines an engine torque request based on the axle torque request and at least one of a turbine speed and whether a clutch of a torque converter is applied. The engine torque control module controls an amount of torque produced by an engine based on the engine torque request.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: June 16, 2015
    Inventors: Michael Livshiz, Roger A. Madsen, Richard B. Jess, Michael J. Pitsch, Michael L. Waterman, Ryan Z. Goode
  • Publication number: 20150147192
    Abstract: A vehicle and a method of reducing sound produced by a liquid fluid pump are disclosed. A pump is activated when a predetermined event is detected. A control valve of the pump is operated in one of an initial and a standard mode when the pump is activated. The control valve is operable to allow a gaseous fluid to vent out of the pump when in the initial mode corresponding to the pump being in a first phase. The control valve is operable to allow a liquid fluid to move through the pump when in the standard mode corresponding to the pump being in a second phase. A solenoid of the control valve is energized and de-energized, at a calibrated frequency, in a sequence when in the initial mode to reduce the sound in the pump during the initial mode.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 28, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Bryan K. Pryor, Bruce A. Tucker, Karl R. Gilgenbach, Richard B. Jess
  • Publication number: 20150039193
    Abstract: A system according to the principles of the present disclosure includes an axle torque determination module, an engine torque determination module, a torque security module, and an engine torque control module. The axle torque determination module determines an axle torque request based on a driver input and a vehicle speed. The engine torque determination module determines an engine torque request based on the axle torque request and at least one of a first turbine speed and whether a clutch of a torque converter is applied. The torque security module determines a secured torque request based on at least one of the driver input, the vehicle speed, and an engine speed. The engine torque control module controls an amount of torque produced by an engine based on one of the engine torque request and the secured torque request.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 5, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: MICHAEL LIVSHIZ, RYAN Z. GOODE, RICHARD B. JESS, MICHAEL L. WATERMAN, RONALD F. LOCHOCKI, JR.
  • Publication number: 20150039190
    Abstract: A system according to the principles of the present disclosure includes an axle torque determination module, an engine torque determination module, and an engine torque control module. The axle torque determination module determines an axle torque request based on a driver input and a vehicle speed. The engine torque determination module determines an engine torque request based on the axle torque request and at least one of a turbine speed and whether a clutch of a torque converter is applied. The engine torque control module controls an amount of torque produced by an engine based on the engine torque request.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: GM Global Technology Operations LLC
    Inventors: MICHAEL LIVSHIZ, Roger A. Madsen, Richard B. Jess, Michael J. Pitsch, Michael L. Waterman, Ryan Z. Goode
  • Patent number: 8897988
    Abstract: A system for a vehicle includes a desired mass air flowrate (MAF) module and a desired effective area module. The desired MAF module generates a desired MAF through a throttle valve of an engine based on an engine torque request. The desired effective area module generates a desired effective area of the throttle valve based on a throttle inlet air pressure (TIAP) and the desired MAF. A throttle actuator module adjusts opening of the throttle valve based on the desired effective area.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: November 25, 2014
    Inventors: James L. Worthing, Lan Wang, Richard B. Jess
  • Patent number: 8781647
    Abstract: A control system for a vehicle includes a communication module and a vehicle stop module. The communication module receives a command from a vehicle services provider (VSP) to decrease a speed of the vehicle to a desired speed, wherein the VSP is located remotely with respect to the vehicle. In response to the received command, the vehicle stop module decreases the speed of the vehicle to the desired speed by controlling at least one of a transmission, an electronic parking brake, and electronically assisted brakes.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: July 15, 2014
    Inventors: Thomas Richard Durkin, Richard B. Jess, John Douglas Tursell
  • Patent number: 8731790
    Abstract: A control system includes a shift detection module, a request generation module, and a request setting module. The shift detection module detects when a transmission is executing a shift. The request generation module generates a transmission torque request to cause an engine to increase a transmission input shaft speed to a desired speed at a desired gear ratio when the transmission is executing the shift. The request setting module selectively sets the transmission torque request equal to a default torque request when the transmission torque request is greater than a first torque and the engine is coupled to a drive wheel.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: May 20, 2014
    Inventors: Richard B. Jess, Stephen Lewis Pudvay, Pascal Tissot, Vincent Holtz, Christopher J. Trush, Timothy J. Hartrey
  • Patent number: 8594904
    Abstract: A control system for an engine includes an engine torque request module, an engine torque response module, a torque command limit module, and an actuation module. The engine torque request module determines an engine torque request based on (i) an engine power request and (ii) a desired engine speed (DRPM). The engine torque response module determines first and second torque values based on (i) an engine torque response model and (ii) first and second torque boundaries, wherein the first and second torque boundaries are based on the DRPM and a measured engine speed (RPM). The torque command limit module generates a secured engine torque request based on (i) the engine torque request and (ii) the first and second torque values. The actuation module controls at least one actuator of the engine based on the secured engine torque request.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: November 26, 2013
    Inventors: Michael Livshiz, Jeffrey M. Kaiser, Richard B. Jess, Michael J. Pitsch, Michael L. Waterman, Pahngroc Oh
  • Patent number: 8577578
    Abstract: A method of controlling torque on a vehicle wheel axle includes comparing a torque intervention request to a predetermined minimum axle torque for a current vehicle speed and a current direction of motion of the vehicle. The predetermined minimum axle torque decreases as vehicle speed in an operator-selected direction of motion increases. An arbitrated axle torque is calculated based on an operator-requested torque, the current vehicle speed, the current direction of motion, and the greater of the torque intervention request and the predetermined minimum torque. Axle torque is applied to the vehicle's wheel axle based at least partially on the arbitrated axle torque.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: November 5, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Christopher E. Whitney, Richard B. Jess, Danny Abdow, Thomas Richard Durkin
  • Patent number: 8550054
    Abstract: A method of operating an engine of a vehicle includes generating a first torque request. The method includes generating a second torque request that is greater than and based on the first torque request, increasing a torque output of the engine based on the second torque request at a first rate and during a first period, and increasing the torque output of the engine based on the first torque request at a second rate and during a second period. The first period is distinct from and before the second period, and the first rate is greater than the second rate.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 8, 2013
    Inventors: Michael L. Kociba, Richard B. Jess, Zhong Li, Jeffrey M. Kaiser, Michael Livshiz
  • Patent number: 8443589
    Abstract: A diesel oxidation catalyst (DOC) testing system includes a DOC that is located in an exhaust system of a vehicle. A control module verifies proper operation of the DOC during a post-fuel injection process in an engine of the vehicle. The control module computes a predicted temperature of exhaust gases at an output of the DOC that corresponds with proper operation of the DOC during the post-fuel injection process, determines an actual temperature of the exhaust gases during the post-fuel injection process, and activates an alarm indicator when a difference between the predicted temperature and the actual temperature is greater than a first predetermined value. A first temperature sensor is located downstream from the DOC in the exhaust system. The first temperature sensor communicates with the control module, generates the actual temperature, and transmits the actual temperature to the control module.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: May 21, 2013
    Inventors: Chuan He, Richard B. Jess, Jay Tolsma, John F. Van Gilder, Wenbo Wang
  • Publication number: 20130096797
    Abstract: A method of controlling torque on a vehicle wheel axle includes comparing a torque intervention request to a predetermined minimum axle torque for a current vehicle speed and a current direction of motion of the vehicle. The predetermined minimum axle torque decreases as vehicle speed in an operator-selected direction of motion increases. An arbitrated axle torque is calculated based on an operator-requested torque, the current vehicle speed, the current direction of motion, and the greater of the torque intervention request and the predetermined minimum torque. Axle torque is applied to the vehicle's wheel axle based at least partially on the arbitrated axle torque.
    Type: Application
    Filed: October 13, 2011
    Publication date: April 18, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Christopher E. Whitney, Richard B. Jess, Danny Abdow, Thomas Richard Durkin
  • Publication number: 20130080023
    Abstract: A control system for an engine includes an engine torque request module, an engine torque response module, a torque command limit module, and an actuation module. The engine torque request module determines an engine torque request based on (i) an engine power request and (ii) a desired engine speed (DRPM). The engine torque response module determines first and second torque values based on (i) an engine torque response model and (ii) first and second torque boundaries, wherein the first and second torque boundaries are based on the DRPM and a measured engine speed (RPM). The torque command limit module generates a secured engine torque request based on (i) the engine torque request and (ii) the first and second torque values. The actuation module controls at least one actuator of the engine based on the secured engine torque request.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Michael Livshiz, Jeffrey M. Kaiser, Richard B. Jess, Michael J. Pitsch, Michael L. Waterman, Pahngroc Oh
  • Patent number: 8364372
    Abstract: A hybrid powertrain and a method of controlling a throttle in an engine of the hybrid powertrain are provided. A throttle system has a throttle at an optimal position for the engine to power a first motor/generator when an electric throttle motor is de-energized to minimize current consumption by the throttle motor. The electric throttle motor is energizable to adjust the position of the throttle. A biasing member biases the throttle to a default position when the electric throttle motor is not energized. The hybrid powertrain has a first motor/generator operatively connected to the engine, and a second motor/generator operatively connected to the generator and operable for providing output power. The engine is operable in a predetermined optimal state to provide power to the generator for powering the first motor/generator. The throttle is at a predetermined position when the engine is in the predetermined optimal state.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: January 29, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: James L. Worthing, John N. Stockbridge, Thomas Richard Durkin, Joseph E. Ploucha, Richard B. Jess, Brian D. Essenmacher
  • Patent number: 8355856
    Abstract: An engine control system of a vehicle comprises a reserves module and a fault diagnostic module. The reserves module controls airflow into an engine based on a driver torque request, increases the airflow into the engine when a reserve torque request is received, and outputs a torque output command for the engine based on the driver torque request. The fault diagnostic module selectively diagnoses a fault in the reserves module when the torque output command is greater than a sum of the driver torque request, a predetermined torque, and a load applied to the engine.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: January 15, 2013
    Inventors: Timothy J. Hartrey, Christopher E. Whitney, Jinchun Peng, Cheryl A. Williams, Richard B. Jess
  • Patent number: 8311718
    Abstract: An engine control system comprises a derivative module and a slip remediation module. The derivative module determines a mathematical derivative of a driven wheel speed of a vehicle. The slip remediation module, when the mathematical derivative is more negative than a predetermined deceleration, at least one of disables regenerative braking being performed by one or more electric motors, increases an axle torque request, and unlocks a torque converter.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: November 13, 2012
    Inventors: Richard B. Jess, Paul A. Bauerle, Christopher E. Whitney, James L. Worthing, Michael L. Kociba
  • Publication number: 20120221224
    Abstract: A system for a vehicle includes a desired mass air flowrate (MAF) module and a desired effective area module. The desired MAF module generates a desired MAF through a throttle valve of an engine based on an engine torque request. The desired effective area module generates a desired effective area of the throttle valve based on a throttle inlet air pressure (TIAP) and the desired MAF. A throttle actuator module adjusts opening of the throttle valve based on the desired effective area.
    Type: Application
    Filed: May 10, 2011
    Publication date: August 30, 2012
    Applicant: GM Global Technology Operations LLC
    Inventors: James L. Worthing, Lan Wang, Richard B. Jess