Patents by Inventor Richard Beeler

Richard Beeler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929411
    Abstract: A method of forming a recessed access device comprises forming a trench in semiconductor material. Sidewalls and a bottom of the trench are lined with low-k gate-insulator material. The low-k gate-insulator material is characterized by its dielectric constant k being no greater than 4.0. Sacrificial material is formed in a bottom portion of the trench over the low-k gate-insulator material and over the trench bottom. A high-k gate-insulator material is formed in an upper portion of the trench above the sacrificial material and laterally-inward of the low-k gate-insulator material that is in the upper portion of the trench. The high-k gate-insulator material is characterized by its dielectric constant k being greater than 4.0. The sacrificial material is replaced with a conductive gate that has its top above a bottom of the high-k gate-insulator material. A pair of source/drain regions is formed in upper portions of the semiconductor material on opposing lateral sides of the trench.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: March 12, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Sau Ha Cheung, Soichi Sugiura, Jaydip Guha, Anthony Kanago, Richard Beeler
  • Publication number: 20230397406
    Abstract: Some embodiments include apparatuses and methods of forming the apparatuses. One of the apparatuses includes a recess formed in a semiconductor material; a dielectric structure formed in the recess; and a control gate for a transistor of a memory cell, the control gate including a first conductive portion formed in the recess and separated from the semiconductor material by a first portion of the dielectric structure, the first dielectric portion including a first dielectric material between the semiconductor material and the second dielectric material, and a second dielectric material between the first dielectric material and the first conductive portion; and the control gate including the second conductive portion formed over the first conductive portion and separated from the semiconductor material by a second portion of the dielectric structure between the semiconductor material and second conductive portion.
    Type: Application
    Filed: June 23, 2022
    Publication date: December 7, 2023
    Inventors: Sau Ha Cheung, Soichi Sugiura, Jaydip Guha, Anthony J. Kanago, Richard Beeler
  • Publication number: 20230062092
    Abstract: A recessed access device comprises a conductive gate in a trench in semiconductor material. A gate insulator extends along sidewalls and around a bottom of the conductive gate between the conductive gate and the semiconductor material. A pair of source/drain regions are in upper portions of the semiconductor material on opposing lateral sides of the trench. A channel region in the semiconductor material below the pair of source/drain regions extends along sidewalls and around a bottom of the trench. The gate insulator comprises a low-k material and a high-k material. The low-k material is characterized by its dielectric constant k being no greater than 4.0. The high-k material is both (a) and (b), where: (a): characterized by its dielectric constant k being greater than 4.0; and (b): comprising SixMyO, where “M” is one or more of Al, metal(s) from Group 2, Group 3, Group 4, Group 5, and the lanthanide series of the periodic table; “x” is 0.999 to 0.6; and “y” is 0.001 to 0.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Hyuck Soo Yang, Sau Ha Cheung, Richard Beeler, Ping Chieh Chiang, Hyoung Lee, Jaydip Guha, Soichi Sugiura
  • Publication number: 20230063549
    Abstract: A method of forming a recessed access device comprises forming a trench in semiconductor material. Sidewalls and a bottom of the trench are lined with low-k gate-insulator material. The low-k gate-insulator material is characterized by its dielectric constant k being no greater than 4.0. Sacrificial material is formed in a bottom portion of the trench over the low-k gate-insulator material and over the trench bottom. A high-k gate-insulator material is formed in an upper portion of the trench above the sacrificial material and laterally-inward of the low-k gate-insulator material that is in the upper portion of the trench. The high-k gate-insulator material is characterized by its dielectric constant k being greater than 4.0. The sacrificial material is replaced with a conductive gate that has its top above a bottom of the high-k gate-insulator material. A pair of source/drain regions is formed in upper portions of the semiconductor material on opposing lateral sides of the trench.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 2, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Sau Ha Cheung, Soichi Sugiura, Jaydip Guha, Anthony Kanago, Richard Beeler
  • Publication number: 20220344451
    Abstract: Some embodiments include dielectric material having a first region containing HfO and having a second region containing ZrO, where the chemical formulas indicate primary constituents rather than specific stoichiometries. The first region contains substantially no Zr, and the second region contains substantially no Hf. Some embodiments include capacitors having a first electrode, a second electrode, and a dielectric material between the first and second electrodes. The dielectric material includes one or more first regions and one or more second regions. The first region(s) contain(s) Hf and substantially no Zr. The second region(s) contain(s) Zr and substantially no Hf. Some embodiments include memory arrays.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 27, 2022
    Applicant: Micron Technology, Inc.
    Inventors: Richard Beeler, Matthew N. Rocklein, Timothy A. Quick, An-Jen B. Cheng, Sumeet C. Pandey
  • Publication number: 20210013318
    Abstract: Apparatuses, methods, and systems related to electrode formation are described. A first portion of a top electrode is formed over a dielectric material of a storage node. A metal oxide is formed over the first portion of the electrode. A second portion of the electrode is formed over the metal oxide.
    Type: Application
    Filed: July 11, 2019
    Publication date: January 14, 2021
    Inventors: An-Jen B. Cheng, Brenda D. Kraus, Sanket S. Kelkar, Matthew N. Rocklein, Christopher W. Petz, Richard Beeler, Dojun Kim
  • Publication number: 20130313579
    Abstract: Detectors based on such Ge(Sn) alloys of the formula Ge1-xSnx (e.g., 0<x<0.01) have increased responsivity while keeping alloy scattering to a minimum. Such small amounts of Sn are also useful for improving the performance of the recently demonstrated Ge-on-Si laser structures, since the addition of Sn monotonically reduces the separation between the direct and indirect minima in the conduction band of Ge. Thus, provided herein are Ge(Sn) alloys of the formula Ge1xSnx, wherein x is less than 0.01, wherein the alloy is optionally n-doped or p-doped; and assemblies and photodiodes comprising the same, and methods for their formation.
    Type: Application
    Filed: November 18, 2011
    Publication date: November 28, 2013
    Inventors: John Kouvetakis, Richard Beeler, Jose Menendez, Radek Roucka
  • Publication number: 20080017504
    Abstract: An electrolysis cell including an outer shell, a sidewall adjacent the outer shell and spaced therefrom, thereby defining a gap between the sidewall and the outer shell, and a plurality of fluid discharge devices interconnected about the outer shell, each of the plurality of fluid discharge devices extending from the outer shell towards the sidewall, wherein each of the plurality of fluid discharge devices is adapted to provide coolant to the sidewall. The plurality of fluid discharge devices may be individually controlled or controlled in sets to provide selective cooling to the sidewall, thereby facilitating ledge maintenance and profile.
    Type: Application
    Filed: May 18, 2007
    Publication date: January 24, 2008
    Applicant: Alcoa Inc.
    Inventors: Xinghua Liu, Richard Beeler, Thomas Hornack, James Burg, Steven Czekaj
  • Publication number: 20080020265
    Abstract: An electrolysis cell including an outer shell, a sidewall adjacent the outer shell and spaced therefrom, thereby defining a gap between the sidewall and the outer shell, and a plurality of fluid discharge devices interconnected about the outer shell, each of the plurality of fluid discharge devices extending from the outer shell towards the sidewall, wherein each of the plurality of fluid discharge devices is adapted to provide coolant to the sidewall. The plurality of fluid discharge devices may be individually controlled or controlled in sets to provide selective cooling to the sidewall, thereby facilitating ledge maintenance and profile.
    Type: Application
    Filed: May 18, 2007
    Publication date: January 24, 2008
    Applicant: Alcoa Inc.
    Inventors: Xinghua Liu, Richard Beeler, Thomas Hornack, James Burg, Steven Czekaj