Patents by Inventor Richard Boyer

Richard Boyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950890
    Abstract: Devices, systems, and methods for monitoring patient hemodynamic status, systemic vascular resistance, reversal of cardiac and respiratory rates, and patient respiratory volume or effort are disclosed. A peripheral venous pressure is measured and used to detect levels, changes, or problems relating to patient blood volume. The peripheral venous pressure measurement is transformed from the time domain to the frequency domain for analysis. A heart rate frequency is identified, and harmonics of the heart rate frequency are detected and evaluated to determine, among other things, hypovolemia or hypervolemia, systemic vascular resistance, and of cardiac and respiratory rates, and patient respiratory volume or effort.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 9, 2024
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Jonathan Handler, James Martucci, Kyle Hocking, Susan Eagle, Colleen Brophy, Richard Boyer, Franz Baudenbacher
  • Patent number: 11935127
    Abstract: This technology relates to providing a web-based digital claims platform to provide users with a simple and customized experience when filing insurance claims. The platform is enabled by a plurality of back-end application programming interface (API) resources. These API resources are event-driven (e.g., when an “event” associated with the claim occurs, the status of the claim changes and the API is provided with updated information indicative of the change). The platform includes a customized user interface (UI) that tailors the claim experience to a particular user's needs. The customization can be based off of stated user preferences and/or learned user preferences associated with the user's past behavior. A user can perform/request various services through the customized UI's self-service function (e.g., rent a car, find a hotel room, select a repair shop, etc.). Additionally, the customized UI can enable the user upload documents, track claim status, find relevant help topics, etc.
    Type: Grant
    Filed: February 9, 2022
    Date of Patent: March 19, 2024
    Assignee: State Farm Mutual Automobile Insurance Company
    Inventors: William Simonovich, Jordan Leach, Natalie Smith, Brittany Boyer, Yohan Santos, Kenrick Niedbalski, Richard Kim, Deborah Taylor, Jared Musil, Archy Ntabona, Abdul Wahab, Loubna Fassi, Mary Gonsalves, Benjamin Tarmann, Sam Yeargin
  • Publication number: 20210267468
    Abstract: Peripheral intravenous (IV) waveform analysis (PIVA) systems and methods for determining an intravascular volume status of a living subject and monitoring an IV line functionality of a peripheral IV device are provided. The PIVA system includes a peripheral IV device and a processing device. The peripheral IV device includes a peripheral IV catheter inserted into a vein of the living subject, and a fluid controlling device to control fluid flow from a fluid source to the peripheral IV catheter. The processing device receives peripheral venous signals from the peripheral IV device, performs a spectral analysis on the peripheral venous signals to obtain a peripheral venous pressure frequency spectrum; and performs a statistical analysis on amplitudes of peaks of the peripheral venous pressure frequency spectrum to determine an intravascular volume status of the living subject and/or an IV line functionality of the peripheral IV catheter in real time.
    Type: Application
    Filed: May 10, 2021
    Publication date: September 2, 2021
    Inventors: Susan S. Eagle, Colleen Brophy, Kyle Mitchell Hocking, Franz Baudenbacher, Richard Boyer
  • Publication number: 20210267470
    Abstract: Devices, systems, and methods for monitoring patient hemodynamic status, systemic vascular resistance, reversal of cardiac and respiratory rates, and patient respiratory volume or effort are disclosed. A peripheral venous pressure is measured and used to detect levels, changes, or problems relating to patient blood volume. The peripheral venous pressure measurement is transformed from the time domain to the frequency domain for analysis. A heart rate frequency is identified, and harmonics of the heart rate frequency are detected and evaluated to determine, among other things, hypovolemia or hypervolemia, systemic vascular resistance, and of cardiac and respiratory rates, and patient respiratory volume or effort.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 2, 2021
    Inventors: Jonathan Handler, James Martucci, Kyle Hocking, Susan Eagle, Colleen Brophy, Richard Boyer, Franz Baudenbacher
  • Publication number: 20210267469
    Abstract: Devices, systems, and methods for monitoring patient hemodynamic status, systemic vascular resistance, reversal of cardiac and respiratory rates, and patient respiratory volume or effort are disclosed. A peripheral venous pressure is measured and used to detect levels, changes, or problems relating to patient blood volume. The peripheral venous pressure measurement is transformed from the time domain to the frequency domain for analysis. A heart rate frequency is identified, and harmonics of the heart rate frequency are detected and evaluated to determine, among other things, hypovolemia or hypervolemia, systemic vascular resistance, and of cardiac and respiratory rates, and patient respiratory volume or effort.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 2, 2021
    Inventors: Jonathan Handler, James Martucci, Kyle Hocking, Susan Eagle, Colleen Brophy, Richard Boyer, Franz Baudenbacher
  • Patent number: 11039753
    Abstract: Devices, systems, and methods for monitoring patient hemodynamic status, systemic vascular resistance, reversal of cardiac and respiratory rates, and patient respiratory volume or effort are disclosed. A peripheral venous pressure is measured and used to detect levels, changes, or problems relating to patient blood volume. The peripheral venous pressure measurement is transformed from the time domain to the frequency domain for analysis. A heart rate frequency is identified, and harmonics of the heart rate frequency are detected and evaluated to determine, among other things, hypovolemia or hypervolemia, systemic vascular resistance, and of cardiac and respiratory rates, and patient respiratory volume or effort.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: June 22, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Jonathan Handler, James Martucci, Kyle Hocking, Susan Eagle, Colleen Brophy, Richard Boyer, Franz Baudenbacher
  • Patent number: 11039754
    Abstract: Devices, systems, and methods for monitoring patient hemodynamic status, systemic vascular resistance, reversal of cardiac and respiratory rates, and patient respiratory volume or effort are disclosed. A peripheral venous pressure is measured and used to detect levels, changes, or problems relating to patient blood volume. The peripheral venous pressure measurement is transformed from the time domain to the frequency domain for analysis. A heart rate frequency is identified, and harmonics of the heart rate frequency are detected and evaluated to determine, among other things, hypovolemia or hypervolemia, systemic vascular resistance, and of cardiac and respiratory rates, and patient respiratory volume or effort.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: June 22, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Jonathan Handler, James Martucci, Kyle Hocking, Susan Eagle, Colleen Brophy, Richard Boyer, Franz Baudenbacher
  • Publication number: 20200179601
    Abstract: One aspect of the present disclosure is a system for hemodynamic resuscitation. The system includes an intravenous access device having a pressure sensor element configured to detect a peripheral venous pressure value in response to an occlusion of a peripheral vein. The system also includes a controller device that is configured to receive a signal from the pressure sensor comprising the peripheral venous pressure value, to process the signal to determine a hemodynamic parameter based on the peripheral venous pressure value, and to generate a resuscitation score based on the hemodynamic parameter.
    Type: Application
    Filed: November 15, 2019
    Publication date: June 11, 2020
    Inventors: Kevin Sexton, Susan Eagle, Kyle Hocking, Franz Baudenbacher, Colleen Brophy, Richard Boyer
  • Publication number: 20200146566
    Abstract: Aspects of the invention relates to systems and methods for monitoring an intravenous (IV) line functionality of an IV device. The system includes an IV catheter to be inserted into the vein of the living subject, at least one pressure sensor in fluid communication with the IV catheter to acquire peripheral venous signals; and a processing device. The processing device receives the peripheral venous signals from the pressure sensor, performs a spectral analysis on the peripheral venous signals to obtain a peripheral venous pressure frequency spectrum, and determines an IV line functionality of the IV catheter in real time, wherein the IV line functionality of the IV catheter indicates IV infiltration when amplitude decreases greater than a first threshold are detected from the peaks of the peripheral venous pressure frequency spectrum.
    Type: Application
    Filed: January 13, 2020
    Publication date: May 14, 2020
    Inventors: Susan S. Eagle, Colleen Brophy, Kyle Mitchell Hocking, Franz Baudenbacher, Richard Boyer
  • Patent number: 10531799
    Abstract: Aspects of the invention relates to systems and methods for monitoring an intravenous (IV) line functionality of an IV device. In one embodiment, the system includes an IV catheter to be inserted into the vein of the living subject, at least one pressure sensor in fluid communication with the IV catheter to acquire peripheral venous signals; and a processing device. The processing device receives the peripheral venous signals from the pressure sensor, performs a spectral analysis on the peripheral venous signals to obtain a peripheral venous pressure frequency spectrum, and then performs a statistical analysis on amplitudes of peaks of the peripheral venous pressure frequency spectrum to determine an IV line functionality of the IV catheter in real time. When the IV line functionality indicates IV infiltration, the processing device may control the fluid controlling device to stop the fluid flow from the fluid source to the IV catheter.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: January 14, 2020
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Susan S. Eagle, Colleen Brophy, Kyle Mitchell Hocking, Franz Baudenbacher, Richard Boyer
  • Publication number: 20190343408
    Abstract: Devices, systems, and methods for monitoring patient hemodynamic status, systemic vascular resistance, reversal of cardiac and respiratory rates, and patient respiratory volume or effort are disclosed. A peripheral venous pressure is measured and used to detect levels, changes, or problems relating to patient blood volume. The peripheral venous pressure measurement is transformed from the time domain to the frequency domain for analysis. A heart rate frequency is identified, and harmonics of the heart rate frequency are detected and evaluated to determine, among other things, hypovolemia or hypervolemia, systemic vascular resistance, and of cardiac and respiratory rates, and patient respiratory volume or effort.
    Type: Application
    Filed: August 22, 2018
    Publication date: November 14, 2019
    Inventors: Jonathan Handler, James Martucci, Kyle Hocking, Susan Eagle, Colleen Brophy, Richard Boyer, Franz Baudenbacher
  • Patent number: 10456046
    Abstract: Aspects of the invention relates to systems and methods for detecting volume status, volume overload, dehydration, hemorrhage and real time assessment of resuscitation, as well as organ failure including but not limited cardiac, renal, and hepatic dysfunction, of a living subject using non-invasive vascular analysis (NIVA). In one embodiment, a non-invasive device, which includes at least one sensor, is used to acquire vascular signals from the living subject in real time. The vascular signals are sent to a controller, which processes the vascular signals to determine at least one hemodynamic parameter, such as the volume status of the living subject. In certain embodiments, the vascular signals are processed by a spectral fast Fourier transform (FFT) analysis to obtain the peripheral vascular signal frequency spectrum, and the volume status of the living subject may be determined by comparing amplitudes of the peaks of the peripheral vascular signal frequency spectrum.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: October 29, 2019
    Assignee: Vanderbilt University
    Inventors: Susan Eagle, Colleen Brophy, Kyle Hocking, Franz Baudenbacher, Richard Boyer
  • Publication number: 20190183362
    Abstract: Devices, systems, and methods for filtering medical device noise artifacts from circulatory waveform signals are disclosed. A circulatory pressure is measured and transformed from the time domain to the frequency domain for analysis to determine patient status. To avoid artifacts of the pumping, the time-domain measurements are filtered to generate a filtered time-domain signal, by removing active pumping periods. The filtered time-domain signal is transformed into a frequency-domain signal, which is analyzed based upon peaks indicating respiratory rate, heart rate, or harmonics thereof. Peaks may be adjusted based on a ratio that considers removed signals. A metric of patient status is then determined from the peaks or corresponding frequencies. The patient status may be related to blood volume of the patient and may be used to control pump operation.
    Type: Application
    Filed: December 14, 2018
    Publication date: June 20, 2019
    Inventors: Jonathan Handler, James Martucci, Kyle Hocking, Susan Eagle, Colleen Brophy, Richard Boyer, Franz Baudenbacher
  • Publication number: 20190000326
    Abstract: Devices, systems, and methods for filtering medical device noise artifacts from venous waveform signals are disclosed. A peripheral venous pressure (PVP) is measured and transformed from the time domain to the frequency domain for analysis to determine patient status. To avoid artifacts of the pumping, the time-domain PVP measurements are filtered to generate a filtered time-domain PVP signal by removing active pumping periods. The filtered time-domain PVP signal is transformed into a frequency-domain PVP signal, which is analyzed based upon peaks indicating respiratory rate, heart rate, or harmonics thereof. A metric of patient status is then determined from the peaks or corresponding frequencies. The patient status may be related to blood volume of the patient and may be used to control pump operation.
    Type: Application
    Filed: June 29, 2018
    Publication date: January 3, 2019
    Inventors: Jonathan Handler, James Martucci, Kyle Hocking, Susan Eagle, Colleen Brophy, Richard Boyer, Franz Baudenbacher
  • Publication number: 20180168467
    Abstract: Devices, systems, and methods for monitoring patient hemodynamic status, systemic vascular resistance, reversal of cardiac and respiratory rates, and patient respiratory volume or effort are disclosed. A peripheral venous pressure is measured and used to detect levels, changes, or problems relating to patient blood volume. The peripheral venous pressure measurement is transformed from the time domain to the frequency domain for analysis. A heart rate frequency is identified, and harmonics of the heart rate frequency are detected and evaluated to determine, among other things, hypovolemia or hypervolemia, systemic vascular resistance, and of cardiac and respiratory rates, and patient respiratory volume or effort.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Inventors: Jonathan Handler, James Martucci, Kyle Hocking, Susan Eagle, Colleen Brophy, Richard Boyer, Franz Baudenbacher
  • Publication number: 20180020935
    Abstract: Aspects of the invention relates to systems and methods for monitoring an intravenous (IV) line functionality of an IV device. In one embodiment, the system includes an IV catheter to be inserted into the vein of the living subject, at least one pressure sensor in fluid communication with the IV catheter to acquire peripheral venous signals; and a processing device. The processing device receives the peripheral venous signals from the pressure sensor, performs a spectral analysis on the peripheral venous signals to obtain a peripheral venous pressure frequency spectrum, and then performs a statistical analysis on amplitudes of peaks of the peripheral venous pressure frequency spectrum to determine an IV line functionality of the IV catheter in real time. When the IV line functionality indicates IV infiltration, the processing device may control the fluid controlling device to stop the fluid flow from the fluid source to the IV catheter.
    Type: Application
    Filed: February 3, 2016
    Publication date: January 25, 2018
    Inventors: Susan S. Eagle, Colleen Brophy, Kyle Mitchell Hocking, Franz Baudenbacher, Richard Boyer
  • Publication number: 20170366571
    Abstract: An asset protection system, apparatus and method are disclosed in which threat attack data that is data about a plurality of previous attacks against a plurality of targets is used to generate a threat profile for a particular threat in which the threat profile contains a threat that has a relationship to an attack mechanism that has a relationship to a victim profile based on the threat attack data. The system, apparatus and method may then protect an asset from the particular threat using the threat profile in which the asset is matched to the victim profile and a defensive response to the particular threat is identified for the asset based on the attack mechanism of the threat.
    Type: Application
    Filed: June 21, 2016
    Publication date: December 21, 2017
    Inventor: Richard Boyer
  • Publication number: 20170332919
    Abstract: Aspects of the invention relates to systems and methods for detecting volume status, volume overload, dehydration, hemorrhage and real time assessment of resuscitation, as well as organ failure including but not limited cardiac, renal, and hepatic dysfunction, of a living subject using non-invasive vascular analysis (NIVA). In one embodiment, a non-invasive device, which includes at least one sensor, is used to acquire vascular signals from the living subject in real time. The vascular signals are sent to a controller, which processes the vascular signals to determine at least one hemodynamic parameter, such as the volume status of the living subject. In certain embodiments, the vascular signals are processed by a spectral fast Fourier transform (FFT) analysis to obtain the peripheral vascular signal frequency spectrum, and the volume status of the living subject may be determined by comparing amplitudes of the peaks of the peripheral vascular signal frequency spectrum.
    Type: Application
    Filed: November 13, 2015
    Publication date: November 23, 2017
    Inventors: Susan Eagle, Colleen Brophy, Kyle Hocking, Franz Baudenbacher, Richard Boyer
  • Publication number: 20160073959
    Abstract: Aspects of the invention relates to systems and methods for hypovolemia and/or hypervolemia detection of a living subject using peripheral intravenous waveform analysis. In one embodiment, the method includes: acquiring, from a vein of the living subject, peripheral venous signals; performing a spectral analysis on the acquired peripheral venous signals to obtain a peripheral venous pressure frequency spectrum; and performing a statistical analysis on amplitudes of peaks of the peripheral venous pressure frequency spectrum to determine the blood volume status of the living subject in real time. Specifically, at least two peaks, respectively corresponding to a first frequency and a second frequency, are obtained on the peripheral venous pressure frequency spectrum. Amplitude change of the second peak is used to determine the blood volume status of the living subject. Hemorrhage may be detected when a significant amplitude decrease is detected from the second baseline peak to the second peak.
    Type: Application
    Filed: September 14, 2015
    Publication date: March 17, 2016
    Inventors: Susan Eagle, Colleen Brophy, Kyle Hocking, Franz Baudenbacher, Richard Boyer
  • Patent number: 8895091
    Abstract: A cover shell and container assembly comprising the cover shell and a tray or pan is disclosed. The cover shell includes inward projecting standoffs which restrict movement of a food product in the pan or tray and reduces damage to decorative elements of the food product during distribution and/or transport.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: November 25, 2014
    Assignee: Schwan's Global Supply Chain, Inc.
    Inventor: Stephen Richard Boyer