Patents by Inventor Richard C. Allen

Richard C. Allen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6987612
    Abstract: An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: January 17, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Richard C. Allen, Arthur L. Kotz, Lockwood W. Carlson, Timothy J. Nevitt, Andrew J. Ouderkirk, Carl A. Stover, Michael F. Weber, Biswaroop Majumdar
  • Patent number: 6985291
    Abstract: A film that includes a first reflective polarizer substantially reflecting light having a first polarization state and substantially transmitting light having a second polarization state, a polarization rotating layer or depolarizing layer (or both) positioned to receive light passing through the first reflective polarizer, and a second reflective polarizer positioned to receive light passing through the polarization rotating layer or depolarizing layer, the second reflective polarizer substantially reflecting light having a third polarization state back through the polarization rotating layer or depolarizing and substantially transmitting light having a fourth polarization state. Articles containing the film can be formed.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: January 10, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Philip E. Watson, Keith M. Kotchick, Richard C. Allen
  • Patent number: 6965474
    Abstract: An optical film includes a layer of simultaneous biaxially stretched polyolefin film that is substantially non-absorbing and non-scattering for at least one polarization state of visible light. The layer has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal. The layer has an in-plane retardance of 100 nm or less and an out-of-plane retardance of 50 nm or greater.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: November 15, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Matthew B. Johnson, Richard C. Allen, Fred J. Roska, Steven J. Rhyner, William W. Merrill, Joan M. Strobel, Kevin M. Hamer
  • Patent number: 6934082
    Abstract: Optical devices using reflective polarizers and, in particular, diffusely reflective polarizers are provided. Many of the optical devices utilize the diffusely reflecting and specularly transmitting properties of diffusely reflecting polarizers to enhance their optical characteristics. The optical devices include a lighting system which uses a reflector formed from a diffusely reflecting polarizer attached to a specular reflector. Another optical device is a display apparatus which uses a diffusely reflecting polarizer layer in combination with a turning lens which folds shallow angle light toward a light modulating layer. Other optical devices exploit the depolarizing characteristics of a diffusely reflecting polarizer when reflecting light. Still other optical devices use diffusely reflecting polarizers to recycle light and improve display illumination.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: August 23, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Richard C. Allen, Sanford Cobb, Jr., Elisa M. Cross, Susan L. Kent, Timothy J. Nevitt, Andrew J. Ouderkirk, Ronald J. Tabar, David L. Wortman
  • Patent number: 6919946
    Abstract: Compensation of a liquid crystal display can be achieved using a compensation structure, having, in the following order: a) a first o-plate; b) a first retarder; c) a liquid crystal cell; d) a second retarder; and e) a second o-plate. The first and second retarders can be c-plates or biaxial retarders.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: July 19, 2005
    Assignee: 3M Innovative Properties Company
    Inventors: Richard C. Allen, Thomas Bachels, Jürg Fünfschilling, Martin Schadt, Hubert Seiberle
  • Patent number: 6829071
    Abstract: Optical devices using reflective polarizers and, in particular, diffusely reflective polarizers are provided. Many of the optical devices utilize the diffusely reflecting and specularly transmitting properties of diffusely reflecting polarizers to enhance their optical characteristics. The optical devices include a lighting system which uses a reflector formed from a diffusely reflecting polarizer attached to a specular reflector. Another optical device is a display apparatus which uses a diffusely reflecting polarizer layer in combination with a turning lens which folds shallow angle light toward a light modulating layer. Other optical devices exploit the depolarizing characteristics of a diffusely reflecting polarizer when reflecting light. Still other optical devices use diffusely reflecting polarizers to recycle light and improve display illumination.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: December 7, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Richard C. Allen, Elisa M. Cross, Ronald J. Tabar
  • Publication number: 20040184150
    Abstract: An optical film includes a layer of simultaneous biaxially stretched polyolefin film that is substantially non-absorbing and non-scattering for at least one polarization state of visible light. The layer has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal. The layer has an in-plane retardance of 100 nm or less and an absolute value of an out-of-plane retardance being 55 nm or greater.
    Type: Application
    Filed: January 29, 2004
    Publication date: September 23, 2004
    Applicant: 3M Innovative Properties Company
    Inventors: Matthew B. Johnson, Richard C. Allen, Fred J. Roska, Steven J. Rhyner, William W. Merrill, Joan M. Strobel, Kevin M. Hamer
  • Publication number: 20040183973
    Abstract: An optical stack includes a first liquid crystal layer and a j-retarder disposed on the liquid crystal layer. The j-retarder includes a simultaneous biaxially stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light. The j-retarder has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an absolute value for an out-of-plane retardance being 55 nm or greater.
    Type: Application
    Filed: January 29, 2004
    Publication date: September 23, 2004
    Applicant: 3M Innovative Properties Company
    Inventors: Fred J. Roska, Richard C. Allen, Matthew B. Johnson, Steven J. Rhyner, William W. Merrill, Joan M. Strobel, Kevin M. Hamer, Gregory E. Gilligan
  • Publication number: 20040164434
    Abstract: Methods of making optical films having continuous phase/disperse phase morphology are disclosed which can control the nature of the disperse phase in such films to yield enhanced optical properties. When used in liquid crystal displays and the like, the films can increase the screen luminance beyond that achievable with known continuous phase/disperse phase optical films.
    Type: Application
    Filed: October 23, 2003
    Publication date: August 26, 2004
    Inventors: Ronald J. Tabar, Susan L. Kent, Richard C. Allen
  • Publication number: 20040156106
    Abstract: An optical film includes a layer of simultaneous biaxially stretched polyolefin film that is substantially non-absorbing and non-scattering for at least one polarization state of visible light. The layer has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal. The layer has an in-plane retardance of 100 nm or less and an out-of-plane retardance of 50 nm or greater.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 12, 2004
    Inventors: Richard C. Allen, Matthew B. Johnson, Fred J. Roska, Steven J. Rhyner, William W. Merrill, Joan M. Strobel, Kevin M. Hamer
  • Publication number: 20040155372
    Abstract: A process for making an optical film includes stretching a polyolefin film in a first direction and stretching the polyolefin film in a second direction different than the first direction forming a biaxially stretched polyolefin film. At least a portion of the stretching of the polyolefin film in the second direction occurs simultaneous with the stretching of the polyolefin film in the first direction. The biaxially stretched polyolefin film has a length and a width and substantially non-absorbing and non-scattering for at least one polarization state of visible light. The biaxially stretched polyolefin film has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 12, 2004
    Inventors: Richard C. Allen, Matthew B. Johnson, Fred J. Roska, Steven J. Rhyner, William W. Merrill, Joan M. Strobel, Kevin M. Hamer, John M. Klaeser, Sebastian F. Zehentmaier
  • Publication number: 20040156000
    Abstract: An optical stack includes a first liquid crystal layer and a j-retarder disposed on the liquid crystal layer. The j-retarder includes a simultaneous biaxally stretched polymeric film being substantially non-absorbing and non-scattering for at least one polarization state of visible light. The j-retarder has x, y, and z orthogonal indices of refraction where at least two of the orthogonal indices of refraction are not equal, an in-plane retardance being 100 nm or less and an out-of-plane retardance being 50 nm or greater.
    Type: Application
    Filed: February 12, 2003
    Publication date: August 12, 2004
    Inventors: Fred J. Roska, Richard C. Allen, Matthew B. Johnson, Steven J. Rhyner, William W. Merrill, Joan M. Strobel, Kevin M. Hamer, Gregory E. Gilligan
  • Publication number: 20040141706
    Abstract: A method for forming a display device including generating a face plate element by providing a first substrate with a photoactive resin thereon and exposing the photoactive resin to a light interference pattern formed by three collimated and coherent light sources, resulting in columnar features. A display device including an optical display element and a polymer face plate that receives or directs light to the optical display element. The face plate includes columnar areas where an index of refraction of the columnar areas is different from the index of refraction of a cladding area surrounding the columnar areas. The columnar areas are formed by exposure of a photoactive resin to a light interference pattern formed by three collimated and coherent light sources. A method of manufacturing a wave guide including providing a first substrate with a photoactive resin thereon and creating a wave guide channel in a wave guide template.
    Type: Application
    Filed: January 17, 2003
    Publication date: July 22, 2004
    Inventors: Michael J. Escuti, Gregory P. Crawford, Richard C. Allen
  • Patent number: 6760157
    Abstract: An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix in combination with light directing materials to enable control of light emitted from a lighting fixture or display. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film, and the light directing materials are chosen to control the direction of polarized light reflected from or transmitted by the optical film.
    Type: Grant
    Filed: July 25, 2000
    Date of Patent: July 6, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Richard C. Allen, Lockwood W. Carlson, Andrew J. Ouderkirk, Michael F. Weber, Arthur L. Kotz, Timothy J. Nevitt, Carl A. Stover, Biswaroop Majumdar
  • Publication number: 20040012855
    Abstract: An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.
    Type: Application
    Filed: July 7, 2003
    Publication date: January 22, 2004
    Applicant: 3M Innovative Properties Company
    Inventors: Richard C. Allen, Arthur L. Kotz, Lockwood W. Carlson, Timothy J. Nevitt, Andrew J. Ouderkirk, Carl A. Stover, Michael F. Weber, Biswaroop Majumdar
  • Patent number: 6673275
    Abstract: An improved optical film having a continuous/disperse phase morphology and a method for making the same is provided. At least one of the continuous and disperse phases comprises a blend of homopolymers which are inter-reacted, as by transesterification. The resulting films exhibit a higher degree of birefringence for a given level of strain than analogous films in which the blend is replaced by a random copolymer.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: January 6, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Richard C. Allen, Susan L. Kent, Ronald J. Tabar, Elisa M. Cross, William Ward Merrill, Stephen A. Johnson, Peter D. Condo, Timothy J. Hebrink, Joseph A. Gangi
  • Patent number: 6654170
    Abstract: An improved optical film having a continuous/disperse phase morphology and a method for making the same is provided. At least one of the continuous and disperse phases comprises a blend of homopolymers which are inter-reacted, as by transesterification. The resulting films exhibit a higher degree of birefringence for a given level of strain than analogous films in which the blend is replaced by a random copolymer.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: November 25, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: William Ward Merrill, Susan L. Kent, Ronald J. Tabar, Richard C. Allen, Elisa M. Cross, Stephen A. Johnson, Peter D. Condo, Timothy J. Hebrink, Joseph A. Gangi
  • Publication number: 20030193636
    Abstract: Compensation of a liquid crystal display can be achieved using a compensation structure, having, in the following order: a) a first o-plate; b) a first retarder; c) a liquid crystal cell; d) a second retarder; and e) a second o-plate. The first and second retarders can be c-plates or biaxial retarders.
    Type: Application
    Filed: April 16, 2002
    Publication date: October 16, 2003
    Inventors: Richard C. Allen, Thomas Bachels, Jurg Funfschilling, Martin Schadt, Hubert Seiberle
  • Patent number: 6627300
    Abstract: An improved optical film having a continuous/disperse phase morphology and a method for making the same is provided. At least one of the continuous and disperse phases comprises a blend of homopolymers which are inter-reacted, as by transesterification. The resulting films exhibit a higher degree of birefringence for a given level of strain than analogous films in which the blend is replaced by a random copolymer.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: September 30, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Susan L. Kent, Ronald J. Tabar, Richard C. Allen, Elisa M. Cross, William Ward Merrill, Stephen A. Johnson, Peter D. Condo, Timothy J. Hebrink, Joseph A. Gangi
  • Patent number: 6590705
    Abstract: An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.
    Type: Grant
    Filed: February 18, 1997
    Date of Patent: July 8, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Richard C. Allen, Arthur L. Kotz, Lockwood W. Carlson, Timothy J. Nevitt, Andrew J. Ouderkirk, Carl A. Stover, Michael F. Weber, Biswaroop Majumdar