Patents by Inventor Richard C. Breitkopf

Richard C. Breitkopf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090314682
    Abstract: Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen.
    Type: Application
    Filed: June 23, 2006
    Publication date: December 24, 2009
    Inventors: Andrew Tye Hunt, Richard C. Breitkopf
  • Patent number: 7625482
    Abstract: Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: December 1, 2009
    Assignee: nGimat Co.
    Inventors: Andrew T. Hunt, Richard C. Breitkopf
  • Publication number: 20020192546
    Abstract: Systems and methods for providing electrolytes having a multi-salt mixture used in electrochemical systems such as lithium ion batteries. The battery system generally includes a cathode, anode and electrolyte cells. The cells prepared with the multi-salt electrolyte, for instance, a mixed lithium/sodium mixed salt electrolyte, exhibit nearly the same capacity as those using pure lithium salt electrolyte. These cells exhibit improved cyclability, smaller internal resistance and better rate capability than those using pure lithium electrolyte. The multi-salt electrolyte is electrochemically stable within a voltage range of about 4.8 to 2.5 V. The mixed Li/Na salt electrolytes provide a cost alternative to a pure lithium salt and enhance the electrochemical properties of lithium ion batteries.
    Type: Application
    Filed: June 7, 2001
    Publication date: December 19, 2002
    Inventors: Zhenhua Mao, Ji-Guang Zhang, Aishui Yu, Richard C. Breitkopf
  • Publication number: 20020150823
    Abstract: Systems and methods for providing an atmospheric pressure chemical vapor deposition grown lithium ion conducting electrolyte component of a thin film battery. The thin film battery generally includes a substrate, a sequentially deposited ensemble of thin film layers including at least one current collector, and an electrolyte sandwiched between a cathode and an anode. The current collecting layer may be positioned on a portion of the substrate to allow good electrical contact with the anode or cathode and an external charging device. A protective coating may be placed over the thin film battery to protect the battery from deterioration when exposed to atmospheric conditions, elevated temperatures and certain manufacturing processes. A process involving preparation of a solution including volatile lithium, aluminum and phosphorus compounds that is sprayed onto a heated substrate containing a thin film layer current collector makes the electrolyte thin film layer.
    Type: Application
    Filed: April 11, 2001
    Publication date: October 17, 2002
    Inventors: Richard C. Breitkopf, Ahmet Erbil
  • Publication number: 20020071989
    Abstract: A thin film battery having a protective package that provides a heat-resistant, hermetic seal for the thin film battery. A thin film battery includes thin film layers of components such as a cathode current collector, a cathode, an electrolyte, an anode, and an anode current collector built up on a substrate. Layers of dielectric material are positioned over the thin film battery. Suitable dielectric materials include aluminum oxide, silicon dioxide, silicon nitride, silicon carbide, tantalum oxide, diamond, and diamond-like-carbon. The dielectric materials are annealed. A layer of epoxy is positioned completely over all layers of the thin film battery and cured under ultraviolet light. Finally, the epoxy is annealed. The resultant thin film battery has a package that provides protection from the atmosphere, high temperatures, undesirable gases and can withstand processes utilized in the semiconductor and other industries to produce printed circuit boards with surface mounted thin film batteries.
    Type: Application
    Filed: December 8, 2000
    Publication date: June 13, 2002
    Inventors: Surrenda K. Verma, Eleston Maxie, Richard C. Breitkopf, Ji-Guang Zhang