Patents by Inventor Richard C. Mattison
Richard C. Mattison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230211134Abstract: Balloon/infusion catheters comprise internal corewires within a single lumen structure in which the corewire can slide relative to the catheter tube within limits, and the balloon is attached to the catheter tube on one end and to the sliding corewire on the other end. The lumen provides fluid to inflate the balloon and to infuse fluid into the vessel proximal to the balloon. The infusion ports can have a polymer valve to limit infusion to lumen pressures at which the balloon is appropriately inflated. The balloon/infusion catheter can have an integral flow meter near its proximal end. Corresponding methods for use of the balloon/infusion catheter are described, such as for the delivery of hydraulic forces when used in conjunction with an aspiration catheter.Type: ApplicationFiled: December 30, 2021Publication date: July 6, 2023Inventors: Matthew F. Ogle, Richard C. Mattison, John Wainwright
-
Patent number: 11642150Abstract: Components and corresponding systems are described for providing removal of a clot or fragment thereof to address an acute ischemic stroke condition. In particular, a filter design is presented that provides metal elements below a bundle of polymer fibers to provide more mechanical strength while cushioning the vessel wall from direct contact with the metal elements. Designs of stent retrievers are presented with polymer covers or mounted on the exterior of a microcatheter. Corresponding systems are described that can use various combinations of the components, generally in combination with an aspiration catheter. Corresponding procedures are described that can effectively use the various devices and systems.Type: GrantFiled: September 25, 2019Date of Patent: May 9, 2023Assignee: Inpria CorporationInventors: Matthew F. Ogle, Lee R. Guterman, Richard C. Mattison
-
Publication number: 20200029998Abstract: Components and corresponding systems are described for providing removal of a clot or fragment thereof to address an acute ischemic stroke condition. In particular, a filter design is presented that provides metal elements below a bundle of polymer fibers to provide more mechanical strength while cushioning the vessel wall from direct contact with the metal elements. Designs of stent retrievers are presented with polymer covers or mounted on the exterior of a microcatheter. Corresponding systems are described that can use various combinations of the components, generally in combination with an aspiration catheter. Corresponding procedures are described that can effectively use the various devices and systems.Type: ApplicationFiled: September 25, 2019Publication date: January 30, 2020Inventors: Matthew F. Ogle, Lee R. Guterman, Richard C. Mattison
-
Patent number: 10463386Abstract: Components and corresponding systems are described for providing removal of a clot or fragment thereof to address an acute ischemic stroke condition. In particular, a filter design is presented that provides metal elements below a bundle of polymer fibers to provide more mechanical strength while cushioning the vessel wall from direct contact with the metal elements. Designs of stent retrievers are presented with polymer covers or mounted on the exterior of a microcatheter. Corresponding systems are described that can use various combinations of the components, generally in combination with an aspiration catheter. Corresponding procedures are described that can effectively use the various devices and systems.Type: GrantFiled: August 31, 2016Date of Patent: November 5, 2019Assignee: MIVI Neuroscience, Inc.Inventors: Matthew F. Ogle, Lee R. Gutterman, Richard C. Mattison
-
Patent number: 10335042Abstract: The present system is directed in various embodiments to methods, devices and systems for sensing, measuring and evaluating compliance in a bodily conduit. In other embodiments, the methods, devices and systems sense, measure, determine, display and/or interpret compliance in a bodily conduit and/or a lesion within the bodily conduit. In all embodiments, the sensing, measuring, determining, displaying and/or interpreting may occur before, during and/or after a procedure performed within the bodily conduit. An exemplary conduit comprises a blood vessel and an exemplary procedure comprises a vascular procedure such as atherectomy, angioplasty, stent placement and/or biovascular scaffolding.Type: GrantFiled: July 16, 2015Date of Patent: July 2, 2019Assignee: Cardiovascular Systems, Inc.Inventors: Victor L. Schoenle, Thomas B. Hoegh, Bruce J. Persson, Kayla Eichers, Matthew Tilstra, Richard C. Mattison, Joseph P. Higgins, Michael J. Grace, Matthew Saterbak, Matthew D. Cambronne, Robert E. Kohler
-
Publication number: 20170056061Abstract: Components and corresponding systems are described for providing removal of a clot or fragment thereof to address an acute ischemic stroke condition. In particular, a filter design is presented that provides metal elements below a bundle of polymer fibers to provide more mechanical strength while cushioning the vessel wall from direct contact with the metal elements. Designs of stent retrievers are presented with polymer covers or mounted on the exterior of a microcatheter. Corresponding systems are described that can use various combinations of the components, generally in combination with an aspiration catheter. Corresponding procedures are described that can effectively use the various devices and systems.Type: ApplicationFiled: August 31, 2016Publication date: March 2, 2017Inventors: Matthew F. Ogle, Lee R. Gutterman, Richard C. Mattison
-
Publication number: 20160183807Abstract: The present system is directed in various embodiments to methods, devices and systems for sensing, measuring and evaluating compliance in a bodily conduit. In other embodiments, the methods, devices and systems sense, measure, determine, display and/or interpret compliance in a bodily conduit and/or a lesion within the bodily conduit. In all embodiments, the sensing, measuring, determining, displaying and/or interpreting may occur before, during and/or after a procedure performed within the bodily conduit. An exemplary conduit comprises a blood vessel and an exemplary procedure comprises a vascular procedure such as atherectomy, angioplasty, stent placement and/or biovascular scaffolding.Type: ApplicationFiled: July 16, 2015Publication date: June 30, 2016Inventors: Victor L. Schoenle, Thomas B. Hoegh, Bruce J. Persson, Kayla Eichers, Matthew Tilstra, Richard C. Mattison, Joseph P. Higgins, Michael J. Grace, Matthew Saterbak, Matthew D. Cambronne, Robert E. Kohler
-
Publication number: 20150080795Abstract: The present invention is directed in various methods, devices and systems relating to providing a balloon on a sheath in combination with orbital atherectomy in order reduce the number of steps in the procedure. In certain embodiments, the balloon comprises adjunctive low pressure balloon for prevention of vessel trauma during dilatation.Type: ApplicationFiled: July 24, 2014Publication date: March 19, 2015Inventors: Richard C. Mattison, Robert E. Kohler, Victor L. Schoenle
-
Publication number: 20140222128Abstract: A system/assembly for delivery and deployment of an inflation expandable stent within a vessel, comprising a catheter having proximal and distal ends; a stent, inflation expandable from a delivery diameter to a deployment diameter, such that the delivery diameter is reduced from the deployment diameter for conforming the stent to the catheter, such that the stent, in its delivery diameter, is coaxially mounted on the catheter near the catheter distal end; an expandable inflation means coaxially mounted on the catheter axially within the stent, for expansion of the stent from the delivery diameter to the deployment diameter upon application of fluid deployment pressure to the inflation means; and a securement component coaxially mounted on the catheter, axially within the expandable inflation means, the securement component designed and adapted to provide a securement pressure to the stent in the delivery diameter to maintain the stent in position on the catheter during delivery to the deployment site.Type: ApplicationFiled: April 4, 2014Publication date: August 7, 2014Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: ANDREW J. DUSBABEK, LOUIS G. ELLIS, CHRISTOPHER R. LARSON, TERRY V. BROWN, CHARLES L. EUTENEUER, STEVEN P. MERTENS, RICHARD C. MATTISON, DAVID J. BLAESER, LINDA R. LORENTZEN CORNELIUS, MARTIN R. WILLARD, FERNANDO DICAPRIO, STANLEY A. NORDIN
-
Patent number: 8709062Abstract: Medical devices and methods for making and using medical devices are disclosed. An example medical device may include an elongate shaft including a first tubular member and a second tubular member. A balloon may be coupled to the shaft. A first member may be coupled to the first tubular member and positioned within the balloon. A second member may be coupled to the first tubular member and positioned within the balloon. A medical implant may be coupled to the shaft and positioned adjacent to the balloon.Type: GrantFiled: September 14, 2012Date of Patent: April 29, 2014Assignee: Boston Scientific Scimed, Inc.Inventors: Andrew J. Dusbabek, Louis G. Ellis, Christopher R. Larson, Terry V. Brown, Charles L. Euteneuer, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard, Fernando DiCaprio, Stanley A. Nordin
-
Publication number: 20130060317Abstract: Medical devices and methods for making and using medical devices are disclosed. An example medical device may include an elongate shaft including a first tubular member and a second tubular member. A balloon may be coupled to the shaft. A first member may be coupled to the first tubular member and positioned within the balloon. A second member may be coupled to the first tubular member and positioned within the balloon. A medical implant may be coupled to the shaft and positioned adjacent to the balloon.Type: ApplicationFiled: September 14, 2012Publication date: March 7, 2013Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: ANDREW J. DUSBABEK, LOUIS G. ELLIS, CHRISTOPHER R. LARSON, TERRY V. BROWN, CHARLES L. EUTENEUER, STEVEN P. MERTENS, RICHARD C. MATTISON, DAVID J. BLAESER, LINDA R. LORENTZEN CORNELIUS, MARTIN R. WILLARD, FERNANDO DI CAPRIO, STANLEY A. NORDIN
-
Patent number: 8246539Abstract: A method for managing the pericardium during intra-pericardial procedures such as the delivery of cardiac support devices. One embodiment of the method includes making an incision through the pericardium to provide access to the pericardial space, and inserting a plurality of strips of lubricious material into and through the incision. The strips of material are spaced around the edges of the incision to form a tubular barrier against the pericardium. End portions of the strips of material in the pericardial space are expanded away from the body to form a lip that lines the inside of the pericardium around the incision.Type: GrantFiled: March 2, 2010Date of Patent: August 21, 2012Assignee: Mardil, Inc.Inventors: Aaron J. Hjelle, Paul Andrew Pignato, Robert G. Walsh, Richard C. Mattison
-
Patent number: 8152819Abstract: An angioplasty and stent delivery system to facilitate introduction and placement of a stent, including a catheter having an expandable distal portion constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state: a stent positioned around the distal portion of the catheter having a contracted condition and being expandable to an expanded condition, and being sized in the contracted condition to closely surround the catheter in the contracted state, the expandable distal portion of the catheter including a balloon within which or over which there is included on a catheter shaft at least one axially movable or enlargeable body of a diameter larger than the catheter shaft to which the stent and balloon are fitted, as by crimping, for holding the stent in place until it is released therefrom by expansion of the balloon.Type: GrantFiled: July 1, 2010Date of Patent: April 10, 2012Assignee: Boston Scientific Scimed, Inc.Inventors: Charles L. Euteneuer, Christopher R. Larson, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Louis G. Ellis, Andrew J. Dusbabek, Terry V. Brown
-
Patent number: 8088102Abstract: The present invention provides a dilatation and stent delivery device which tracks over two guidewires. One guidewire is disposed in each branch vessel of a bifurcation. The present invention provides a dilatation and stent delivery device which enables efficient and accurate stent deployment and dilatation of bifurcation lesions.Type: GrantFiled: October 27, 2008Date of Patent: January 3, 2012Assignee: Boston Scientific Scimed, Inc.Inventors: Daniel O. Adams, David J. Blaeser, Richard C. Mattison
-
Patent number: 7922710Abstract: A wire station is disclosed for securing and managing multiple wire members used in a catheter system. The wire management system includes means for securing the proximal portion of two wire members in a spatially separate arrangement. The wire station of the present invention additionally provides a physician with the flexibility of either directly attaching the wire station of the present invention to the catheter system directly, or positioning the wire station at a remote location.Type: GrantFiled: April 16, 2004Date of Patent: April 12, 2011Assignee: Boston Scientific Scimed, Inc.Inventors: Tracee E. J. Eidenschink, Richard C. Mattison
-
Publication number: 20100274344Abstract: A system/assembly for delivery and deployment of an inflation expandable stent within a vessel, comprising a catheter having proximal and distal ends; a stent, inflation expandable from a delivery diameter to a deployment diameter, such that the delivery diameter is reduced from the deployment diameter for conforming the stent to the catheter, such that the stent, in its delivery diameter, is coaxially mounted on the catheter near the catheter distal end; an expandable inflation means coaxially mounted on the catheter axially within the stent, for expansion of the stent from the delivery diameter to the deployment diameter upon application of fluid deployment pressure to the inflation means; and a securement component coaxially mounted on the catheter, axially within the expandable inflation means, the securement component designed and adapted to provide a securement pressure to the stent in the delivery diameter to maintain the stent in position on the catheter during delivery to the deployment site.Type: ApplicationFiled: March 1, 2010Publication date: October 28, 2010Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Andrew J. Dusbabek, Louis G. Ellis, Christopher R. Larson, Terry V. Brown, Charles L. Euteneuer, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard, Fernando Di Caprio, Stanley A. Nordin
-
Publication number: 20100274343Abstract: An angioplasty and stent delivery system to facilitate introduction and placement of a stent, including a catheter having an expandable distal portion constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state: a stent positioned around the distal portion of the catheter having a contracted condition and being expandable to an expanded condition, and being sized in the contracted condition to closely surround the catheter in the contracted state, the expandable distal portion of the catheter including a balloon within which or over which there is included on a catheter shaft at least one axially movable or enlargeable body of a diameter larger than the catheter shaft to which the stent and balloon are fitted, as by crimping, for holding the stent in place until it is released therefrom by expansion of the balloon.Type: ApplicationFiled: July 1, 2010Publication date: October 28, 2010Applicant: BOSTON SCIENTIFIC SCIMED, INC.Inventors: Charles L. Euteneuer, Christopher R. Larson, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Louis G. Ellis, Andrew J. Dusbabek, Terry V. Brown
-
Patent number: 7749234Abstract: An angioplasty and stent delivery system to facilitate introduction and placement of a stent, including a catheter having an expandable distal portion constructed and arranged for expanding the outer diameter of the catheter from a contracted state to an expanded state: a stent positioned around the distal portion of the catheter having a contracted condition and being expandable to an expanded condition, and being sized in the contracted condition to closely surround the catheter in the contracted state, the expandable distal portion of the catheter including a balloon within which or over which there is included on a catheter shaft at least one axially movable or enlargeable body of a diameter larger than the catheter shaft to which the stent and balloon are fitted, as by crimping, for holding the stent in place until it is released therefrom by expansion of the balloon.Type: GrantFiled: August 26, 2003Date of Patent: July 6, 2010Assignee: Boston Scientific Scimed, Inc.Inventors: Charles L. Euteneuer, Christopher R. Larson, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Louis G. Ellis, Andrew J. Dusbabek, Terry V. Brown
-
Publication number: 20100152542Abstract: A method for managing the pericardium during intra-pericardial procedures such as the delivery of cardiac support devices. One embodiment of the method includes making an incision through the pericardium to provide access to the pericardial space, and inserting a plurality of strips of lubricious material into and through the incision. The strips of material are spaced around the edges of the incision to form a tubular barrier against the pericardium. End portions of the strips of material in the pericardial space are expanded away from the body to form a lip that lines the inside of the pericardium around the incision.Type: ApplicationFiled: March 2, 2010Publication date: June 17, 2010Applicant: ACORN CARDIOVASCULAR, INC.Inventors: Aaron J. HJELLE, Paul Andrew PIGNATO, Robert G. WALSH, Richard C. Mattison
-
Patent number: 7670364Abstract: A system/assembly for delivery and deployment of an inflation expandable stent within a vessel, comprising a catheter having proximal and distal ends; a stent, inflation expandable from a delivery diameter to a deployment diameter, such that the delivery diameter is reduced from the deployment diameter for conforming the stent to the catheter, such that the stent, in its delivery diameter, is coaxially mounted on the catheter near the catheter distal end; an expandable inflation means coaxially mounted on the catheter axially within the stent, for expansion of the stent from the delivery diameter to the deployment diameter upon application of fluid deployment pressure to the inflation means; and a securement component coaxially mounted on the catheter, axially within the expandable inflation means, the securement component designed and adapted to provide a securement pressure to the stent in the delivery diameter to maintain the stent in position on the catheter during delivery to the deployment site.Type: GrantFiled: December 16, 2003Date of Patent: March 2, 2010Assignee: Boston Scientific Scimed, Inc.Inventors: Andrew J. Dusbabek, Louis G. Ellis, Christopher R. Larson, Terry V. Brown, Charles L. Euteneuer, Steven P. Mertens, Richard C. Mattison, David J. Blaeser, Linda R. Lorentzen Cornelius, Martin R. Willard, Fernando Di Caprio, Stanley A. Nordin