Patents by Inventor Richard C. Nova

Richard C. Nova has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200376285
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments, the WCD system includes a speaker system and a memory. Prompts have been saved in advance in the patient's own voice, and stored in the memory. In case of an emergency, the prompts may be played by the speaker system in the patient's own voice, and heard by a bystander.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Applicant: West Affum Holdings Corp.
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Patent number: 10744335
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments, the WCD system includes a speaker system and a memory. Prompts have been saved in advance in the patient's own voice, and stored in the memory. In case of an emergency, the prompts may be played by the speaker system in the patient's own voice, and heard by a bystander.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: August 18, 2020
    Assignee: West Affum Holdings Corp.
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, Jr., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Publication number: 20200121938
    Abstract: In some embodiments, a wearable medical device system includes a processor configured to determine whether a patient requires electrical therapy to be provided via a plurality of therapy electrodes, the electrical therapy comprising discharging at least a portion of a stored electrical charge from an energy storage module, and if so, cause a fluid deploying mechanism to deploy a portion of the stored fluid to an interface between at least two therapy electrodes and the patient's skin prior to providing the electrical therapy, the deployed portion of fluid adapted to decrease the impedance measured by an impedance measurement circuit, and cause the fluid deploying mechanism to deploy an additional portion of fluid in response to the impedance measured by the impedance measurement circuit increasing above a threshold during the electrical therapy.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Applicant: West Affum Holdings Corp.
    Inventors: Daniel Ralph Piha, Joseph Leo Sullivan, Phillip Dewey Foshee, JR., Daniel Peter Finch, Isabelle Banville, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Robert Reuben Buchanan, Krystyna Szul, Gregory T. Kavounas
  • Publication number: 20200023190
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments the WCD system includes a speaker system that transmits a sound designed to assist a bystander to perform CPR. Optionally CPR chest compressions received by the patient can be further detected, and feedback can be given. In embodiments, a WCD system may include a user interface that can be controlled to output CPR prompts tailored to a skill level of the bystander.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Applicant: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, JR., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Patent number: 10507331
    Abstract: In embodiments, a wearable cardiac defibrillator system includes an energy storage module configured to store a charge. Two electrodes can be configured to be applied to respective locations of a patient. One or more reservoirs can store one or more conductive fluids. Respective fluid deploying mechanisms can be configured to cause the fluids to be released from one or more of the reservoirs, which decreases the impedance at the patient location, and decreases discomfort for the patient. In some embodiments an impedance is sensed between the two electrodes, and the stored charge is delivered when the sensed impedance meets a discharge condition. In some embodiments, different fluids are released for different patient treatments. In some embodiments, fluid release is controlled to be in at least two doses, with an intervening pause.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: December 17, 2019
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Daniel Ralph Piha, Joseph Leo Sullivan, Phillip Dewey Foshee, Jr., Daniel Peter Finch, Isabelle Banville, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Robert Reuben Buchanan, Krystyna Szul, Gregory T. Kavounas
  • Patent number: 10504618
    Abstract: Techniques for routing event data from a field device, such as an external defibrillator, to a selected subset of a plurality of possible destinations are described. The event data may include physiological data of the patient, such as a 12-lead electrocardiogram (ECG). The destinations may be associated with one of a plurality of patient treatment centers, and may include, as examples, computing device, printers, displays, personal digital assistants, or web-accessible accounts. In some examples, a server maintains user-configurable information or rules for at least some of the destinations, and uses the information or rules for determining whether event data received from a field device is routed to the destination. In some examples, the server may also make the routing determination based on an analysis of event data, such as a determination as to whether the event data indicates that the patient is suspected to be experiencing an acute myocardial infarction.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: December 10, 2019
    Assignee: Physio-Control, Inc.
    Inventors: Dana Lewis, Randy L. Merry, Richard C. Nova
  • Patent number: 10426964
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments the WCD system includes a speaker system that transmits a sound designed to assist a bystander to perform CPR. Optionally CPR chest compressions received by the patient can be further detected, and feedback can be given. In embodiments, a WCD system may include a user interface that can be controlled to output CPR prompts tailored to a skill level of the bystander.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: October 1, 2019
    Assignee: West Affum Holdings Corp.
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, Jr., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Patent number: 10406066
    Abstract: Integrated devices for performing external chest compression (ECC) and defibrillation on a person and methods using the devices. Integrated devices can include a backboard, at least one chest compression member operably coupled to the backboard, and a defibrillator module operably coupled to the backboard. The integrated devices can include physiological sensors, electrodes, wheels, controllers, human interface devices, cooling modules, ventilators, cameras, and voice output devices. Methods can include defibrillating, pacing, ventilating, cooling, and performing ECC in an integrated, coordinated, and/or synchronous manner using the full capabilities of the device. Some devices include controllers executing methods for automatically performing the coordinated activities utilizing the device capabilities.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: September 10, 2019
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Cynthia Jayne, Ronald E. Stickney, Richard C. Nova, Stephen W. Radons, David R. Hampton, D. Craig Edwards, Joseph L. Sullivan, Steven E. Sjoquist
  • Publication number: 20190151191
    Abstract: Time after time studies find that often, even when administered by trained professionals, cardiopulmonary resuscitation (CPR) compression rates and depth are inadequate. Too week, shallow or too forceful compressions may contribute to suboptimal patient outcome. Several parameters are crucial for optimal and properly-administered CPR. Crucial parameters include proper hand positioning on the patient's chest, depth of compression of 4-5 cm, and compression rate of 100 compressions per minute. The crucial parameters are often affected by patient parameters, and relative to the patient, rescuer parameters, such as patient thoracic volume; weight; age; gender; and rescuer's, relative to the patient's, parameters, such as weight, height; physical form, etc. Proposed is an automated CPR feedback device with user programmable settings for assisting with real-time feedback and subsequently correcting rescuers patient customized CPR technique.
    Type: Application
    Filed: January 17, 2019
    Publication date: May 23, 2019
    Inventors: Micha Coleman, Richard C. Nova, Maegan P. Wilkinson, John C. Daynes, Ryan W. Apperson
  • Publication number: 20190156924
    Abstract: Techniques for routing event data from a field device, such as an external defibrillator, to a selected subset of a plurality of possible destinations are described. The event data may include physiological data of the patient, such as a 12-lead electrocardiogram (ECG). The destinations may be associated with one of a plurality of patient treatment centers, and may include, as examples, computing device, printers, displays, personal digital assistants, or web-accessible accounts. In some examples, a server maintains user-configurable information or rules for at least some of the destinations, and uses the information or rules for determining whether event data received from a field device is routed to the destination. In some examples, the server may also make the routing determination based on an analysis of event data, such as a determination as to whether the event data indicates that the patient is suspected to be experiencing an acute myocardial infarction.
    Type: Application
    Filed: January 23, 2019
    Publication date: May 23, 2019
    Inventors: Dana Lewis, Randy L. Merry, Richard C. Nova
  • Patent number: 10213612
    Abstract: A method for operating a defibrillator including an aural output device includes causing the output device to deliver a first verbal instruction which includes a prompt to call an emergency response system; determining if the user elects to have the defibrillator continue on to a second instruction; and if it is determined that the user elects to have the defibrillator continue on to the next instruction, causing the defibrillator to deliver the second verbal instruction. In an exemplary embodiment, the step of determining if the user elects to continue on to the second instruction includes the step of determining if the user has performed an action upon the defibrillator.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: February 26, 2019
    Inventors: Richard C. Nova, Shawn R. Bertagnole
  • Patent number: 10182965
    Abstract: Time after time studies find that often, even when administered by trained professionals, cardiopulmonary resuscitation (CPR) compression rates and depth are inadequate. Too week, shallow or too forceful compressions may contribute to suboptimal patient outcome. Several parameters are crucial for optimal and properly-administered CPR. Crucial parameters include proper hand positioning on the patient's chest, depth of compression of 4-5 cm, and compression rate of 100 compressions per minute. The crucial parameters are often affected by patient parameters, and relative to the patient, rescuer parameters, such as patient thoracic volume; weight; age; gender; and rescuer's, relative to the patient's, parameters, such as weight, height; physical form, etc. Proposed is an automated CPR feedback device with user programmable settings for assisting with real-time feedback and subsequently correcting rescuers patient customized CPR technique.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: January 22, 2019
    Assignee: Physio-Control, Inc.
    Inventors: Micha Coleman, Richard C. Nova, Maegan P. Wilkinson, John C. Daynes, Ryan W. Apperson
  • Patent number: 10098573
    Abstract: A medical device and/or a method are used by a rescuer who is caring for a patient. The depth of CPR chest compressions is determined, by detecting magnetic fields. An interference is sensed, which is not associated with the CPR chest compressions, but which is superimposed on the detected magnetic fields. Appropriate countermeasures may be taken, if the sensed interference is larger than a threshold.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: October 16, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Isabelle L. Banville, Robert Peter Marx, Jr., David Thomas Brown, Richard C. Nova
  • Publication number: 20180289275
    Abstract: Patient electrodes, patient monitors, defibrillators, wearable defibrillators, software and methods may warn when an electrode stops being fully attached to the patient's skin. A patient electrode includes a pad for attaching to the skin of a patient, a lead coupled to the pad, and a contact detector that can change state, when the pad does not contact fully the skin of the patient. When the detector changes state, an output device may emit an alert, for notifying a rescuer or even the patient.
    Type: Application
    Filed: June 8, 2018
    Publication date: October 11, 2018
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Patent number: 10046170
    Abstract: Methods and apparatus are provided for determining a defibrillation treatment protocol in an external defibrillator whereby a user may override a CPR-first default protocol. The method includes following steps configured in a defibrillator controller of issuing an inquiry; waiting for a response to the inquiry for a set time; ordering a CPR treatment protocol if no response is received within the set time; analyzing a response; ordering a CPR treatment protocol upon receiving a non-affirmative response to the inquiry; and ordering a shock treatment protocol upon receiving an affirmative response to the inquiry. Upon selecting a shock treatment protocol, the defibrillator performs a shock analysis under the shock treatment protocol, and either orders a CPR treatment protocol if shock treatment is not indicated by the shock analysis or provides a defibrillation shock if shock treatment is indicated by the shock analysis. Queries may be presented to a user in visual, audible, or both visual and audible format.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: August 14, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Isabelle Banville, David R. Hampton, Gregory T. Kavounas, Richard C. Nova
  • Patent number: 10022062
    Abstract: Patient electrodes, patient monitors, defibrillators, wearable defibrillators, software and methods may warn when an electrode stops being fully attached to the patient's skin. A patient electrode includes a pad for attaching to the skin of a patient, a lead coupled to the pad, and a contact detector that can change state, when the pad does not contact fully the skin of the patient. When the detector changes state, an output device may emit an alert, for notifying a rescuer or even the patient.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: July 17, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Patent number: 9987496
    Abstract: A wearable medical device includes a garment and a medical device. The medical device has a functionality that can transition between an operative state and an inoperative state. When the functionality is in the inoperative state, a protrusion extends so as to poke the patient, as an indication that steps need to be taken to make the device ready for use.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: June 5, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph Leo Sullivan, Isabelle Banville, Blaine Krusor, Daniel Ralph Piha, Laura Marie Gustavson, David Peter Finch, Kenneth Frederick Cowan, Richard C. Nova
  • Publication number: 20180147414
    Abstract: In embodiments, a wearable cardiac defibrillator system includes an energy storage module configured to store a charge. Two electrodes can be configured to be applied to respective locations of a patient. One or more reservoirs can store one or more conductive fluids. Respective fluid deploying mechanisms can be configured to cause the fluids to be released from one or more of the reservoirs, which decreases the impedance at the patient location, and decreases discomfort for the patient. In some embodiments an impedance is sensed between the two electrodes, and the stored charge is delivered when the sensed impedance meets a discharge condition. In some embodiments, different fluids are released for different patient treatments. In some embodiments, fluid release is controlled to be in at least two doses, with an intervening pause.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 31, 2018
    Inventors: Daniel Ralph Piha, Joseph Leo Sullivan, Phillip Dewey Foshee, JR., Daniel Peter Finch, Isabelle Banville, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Robert Reuben Buchanan, Krystyna Szul, Gregory T. Kavounas
  • Publication number: 20180110994
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments, the WCD system includes a speaker system and a memory. Prompts have been saved in advance in the patient's own voice, and stored in the memory. In case of an emergency, the prompts may be played by the speaker system in the patient's own voice, and heard by a bystander.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 26, 2018
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, JR., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Publication number: 20180110995
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments the WCD system includes a speaker system that transmits a sound designed to assist a bystander to perform CPR. Optionally CPR chest compressions received by the patient can be further detected, and feedback can be given. In embodiments, a WCD system may include a user interface that can be controlled to output CPR prompts tailored to a skill level of the bystander.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 26, 2018
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, JR., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas