Patents by Inventor Richard C. Willson, III

Richard C. Willson, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150324518
    Abstract: Selecting which sub-sequences in a database of nucleic acid such as 16S rRNA are highly characteristic of particular groupings of bacteria, microorganisms, fungi, etc. on a substantially phylogenetic tree. Also applicable to viruses comprising viral genomic RNA or DNA. A catalogue of highly characteristic sequences identified by this method is assembled to establish the genetic identity of an unknown organism. The characteristic sequences are used to design nucleic acid hybridization probes that include the characteristic sequence or its complement, or are derived from one or more characteristic sequences. A plurality of these characteristic sequences is used in hybridization to determine the phylogenetic tree position of the organism(s) in a sample. Those target organisms represented in the original sequence database and sufficient characteristic sequences can identify to the species or subspecies level. Oligonucleotide arrays of many probes are especially preferred.
    Type: Application
    Filed: June 25, 2012
    Publication date: November 12, 2015
    Inventors: George E. Fox, Richard C. Willson, III, Zhengdong Zhang
  • Patent number: 8214153
    Abstract: Selecting which sub-sequences in a database of nucleic acid such as 16S rRNA are highly characteristic of particular groupings of bacteria, microorganisms, fungi, etc. on a substantially phylogenetic tree. Also applicable to viruses comprising viral genomic RNA or DNA. A catalogue of highly characteristic sequences identified by this method is assembled to establish the genetic identity of an unknown organism. The characteristic sequences are used to design nucleic acid hybridization probes that include the characteristic sequence or its complement, or are derived from one or more characteristic sequences. A plurality of these characteristic sequences is used in hybridization to determine the phylogenetic tree position of the organism(s) in a sample. Those target organisms represented in the original sequence database and sufficient characteristic sequences can identify to the species or subspecies level. Oligonucleotide arrays of many probes are especially preferred.
    Type: Grant
    Filed: January 26, 2002
    Date of Patent: July 3, 2012
    Assignee: Technology Licensing Co. LLC
    Inventors: George E. Fox, Richard C. Willson, III, Zhengdong Zhang
  • Patent number: 7569347
    Abstract: RNA, preferably messenger RNA, is purified by use of selective precipitation, preferably by addition of compaction agents. Also included is a scalable method for the liquid-phase separation of DNA from RNA and RNA may also be recovered by fractional precipitation. Specific classes of compounds e.g. phase transfer catalysts (PTCs), most preferably selected polyamines of U.S. Pat. No. 6,617,108 polyamines which are quaternary compounds are unexpectedly potent in causing selective precipitation of DNA away from RNA, at low concentrations and in the presence of relatively elevated ionic strength selective removal of DNA can also remove both RNA and DNA, leaving behind a mixture which is advantageous for the further purification of, e.g., proteins.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: August 4, 2009
    Assignee: Technology Licensing Co. LLC
    Inventors: Richard C. Willson, III, Richard Don Goodin
  • Patent number: 6908768
    Abstract: Apparatus for testing catalyst candidates including a multi-cell holder e.g. a honeycomb or plate, or a collection of individual support particles that have been treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients and dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets. The apparatus also includes structure for contacting the catalyst candidates with a potentially reactive feed stream or batch e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g. by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g. by multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis e.g. spectral analysis, chromatography etc.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: June 21, 2005
    Assignee: University of Houston, Texas
    Inventor: Richard C. Willson, III
  • Patent number: 6630111
    Abstract: Apparatus for evaluating catalysts, including a multicell holder, e.g., a honeycomb or plate, or a collection of individual support particles, is treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients, is dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets, then is contacted with a potentially reactive feed stream or batch, e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g., by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g., multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis, e.g., spectral analysis, chromatography, etc., or by observing temperature change in the vicinity of the catalyst, e.g.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: October 7, 2003
    Assignee: University of Houston
    Inventor: Richard C. Willson, III
  • Patent number: 6623969
    Abstract: Methods for evaluating catalysts, in which a multicell holder, e.g., a honeycomb or plate, or a collection of individual support particles, is treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients, is dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets, then is contacted with a potentially reactive feed stream or batch, e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g., by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g., multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis, e.g., spectral analysis, chromatography, etc., or by observing temperature change in the vicinity of the catalyst, e.g.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: September 23, 2003
    Assignee: University of Houston
    Inventor: Richard C. Willson, III
  • Patent number: 6623968
    Abstract: Apparatus for evaluating catalysts, including a multicell holder, e.g., a honeycomb or plate, or a collection of individual support particles, is treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients, is dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets, then is contacted with a potentially reactive feed stream or batch, e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g., by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g., multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis, e.g., spectral analysis, chromatography, etc., or by observing temperature change in the vicinity of the catalyst, e.g.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: September 23, 2003
    Assignee: University of Houston
    Inventor: Richard C. Willson, III
  • Patent number: 6623970
    Abstract: Methods for evaluating catalysts, in which a multicell holder, e.g., a honeycomb or plate, or a collection of individual support particles, is treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients, is dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets, then is contacted with a potentially reactive feed stream or batch, e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g., by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g., multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis, e.g., spectral analysis, chromatography, etc., or by observing temperature change in the vicinity of the catalyst, e.g.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: September 23, 2003
    Assignee: University of Houston
    Inventor: Richard C. Willson, III
  • Patent number: 6623967
    Abstract: Methods for evaluating catalysts, in which a multicell holder, e.g., a honeycomb or plate, or a collection of individual support particles, is treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients, is dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets, then is contacted with a potentially reactive feed stream or batch, e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g., by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g., multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis, e.g., spectral analysis, chromatography, etc., or by observing temperature change in the vicinity of the catalyst, e.g.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: September 23, 2003
    Assignee: University of Houston
    Inventor: Richard C. Willson, III
  • Patent number: 6617108
    Abstract: Preferred embodiments of the invention include purification of DNA, preferably plasmid DNA, by use of selective precipitation, preferably by addition of compaction agents. Also, included is a sealable method for the liquid phase separation of DNA from RNA. RNA may also be recovered by fractional precipitation according to the invention. Applicants have discovered that RNA, commonly the major contaminant in DNA preparations, can be left in solution while valuable purified plasmid DNA is directly precipitated. Additional aspects of the invention include mini-preps, preferably of plasmid and chromosomal DNA, to obtain sequenceable and restriction digestible DNA in high yields in multiple simultaneous procedures. Still further aspects disclose enhanced stripping of the compaction agent by a stripping method comprising high salt addition and pH shift, and combinations of these techniques. Also, disclosed is a method of assay in which a labeled probe is precipitated when it is hybridized to a target, (e.g.
    Type: Grant
    Filed: July 3, 2000
    Date of Patent: September 9, 2003
    Assignee: Technology Licensing Co. LLC
    Inventors: Richard C. Willson, III, Jason Murphy
  • Patent number: 6605470
    Abstract: Methods for evaluating catalysts, in which a multicell holder, e.g., a honeycomb or plate, or a collection of individual support particles, is treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients, is dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets, then is contacted with a potentially reactive feed stream or batch, e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g., by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g., multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis, e.g., spectral analysis, chromatography, etc., or by observing temperature change in the vicinity of the catalyst, e.g.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: August 12, 2003
    Assignee: University of Houston, Texas
    Inventor: Richard C. Willson, III
  • Patent number: 6514764
    Abstract: A multicell holder e.g., a honeycomb or plate, or a collection of individual support particles, is treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients, is dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets, then is contacted with a potentially reactive feed stream or batch e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g. by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g. by multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis e.g. spectral analysis, chromatography etc, or by observing temperature change in the vicinity of the catalyst e.g. by thermographic techniques, to determine the relative efficacy of the catalysts in each combination.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: February 4, 2003
    Assignee: University of Houston, Texas
    Inventor: Richard C. Willson, III
  • Patent number: 6333196
    Abstract: Apparatus for testing catalyst candidates including a multicell holder e.g. a honeycomb or plate, or a collection of individual support particles that have been treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients and dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets. The apparatus also includes structure for contacting the catalyst candidates with a potentially reactive feed stream or batch e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g. by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g. by multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis e.g.
    Type: Grant
    Filed: February 8, 2000
    Date of Patent: December 25, 2001
    Assignee: University of Houston
    Inventor: Richard C. Willson, III
  • Patent number: 6063633
    Abstract: A multicell holder e.g. a honeycomb or plate, or a collection of individual support particles, is treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients, is dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets, then is contacted with a potentially reactive feed stream or batch e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CC12F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g. by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g. by multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis e.g. spectral analysis, chromatography etc, or by observing temperature change in the vicinity of the catalyst e.g. by thermographic techniques, to determine the relative efficacy of the catalysts in each combination.
    Type: Grant
    Filed: June 17, 1996
    Date of Patent: May 16, 2000
    Assignee: The University of Houston
    Inventor: Richard C. Willson, III
  • Patent number: 4678583
    Abstract: A process for forming a purified solute from an aqueous solution is provided whereby a mixture of an extractant, a hydrate former and the aqueous solution is first formed. The hydrate former forms a hydrate with water while the solute does not form a hydrate. The extractant takes up the solute from the aqueous solution. The mixture is subjected to a temperature and pressure sufficient to form the solid hydrate of the hydrate former, an aqueous solution of the solute and a portion comprising the extractant containing the solute. The solute is recovered from the portion comprising the extractant and the solute.
    Type: Grant
    Filed: June 12, 1986
    Date of Patent: July 7, 1987
    Assignee: Massachusetts Institute of Technology
    Inventors: Richard C. Willson, III, Eric Bulot, Charles L. Cooney