Patents by Inventor Richard C. Yi

Richard C. Yi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10900123
    Abstract: An apparatus for vapor deposition of thin film coatings, including: a process controller; a plurality of precursor containers into which a plurality of coating precursors, each in the form of a liquid or a solid, are respectively placed; a plurality of precursor vapor reservoirs, each in communication with a respective one of said precursor containers; a plurality of in-line devices which control a vapor flow of a coating precursor vapor from one of said precursor containers into one of said precursor vapor reservoirs with which said precursor container is in communication upon receipt of a signal from said process controller; a plurality of precursor control valves which control vapor flow from said precursor vapor reservoir upon receipt of a signal from said process controller; and a process chamber for vapor deposition of said coating on a substrate when present in said process chamber.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: January 26, 2021
    Assignee: SPTS Technologies Limited
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn
  • Publication number: 20170335455
    Abstract: An apparatus for vapor deposition of thin film coatings, including: a process controller; a plurality of precursor containers into which a plurality of coating precursors, each in the form of a liquid or a solid, are respectively placed; a plurality of precursor vapor reservoirs, each in communication with a respective one of said precursor containers; a plurality of in-line devices which control a vapor flow of a coating precursor vapor from one of said precursor containers into one of said precursor vapor reservoirs with which said precursor container is in communication upon receipt of a signal from said process controller; a plurality of precursor control valves which control vapor flow from said precursor vapor reservoir upon receipt of a signal from said process controller; and a process chamber for vapor deposition of said coating on a substrate when present in said process chamber.
    Type: Application
    Filed: August 8, 2017
    Publication date: November 23, 2017
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn
  • Patent number: 9725805
    Abstract: A vapor phase deposition method and apparatus for the application of thin layers and coatings on substrates. The method and apparatus are useful in the fabrication of electronic devices, micro-electromechanical systems (MEMS), Bio-MEMS devices, micro and nano imprinting lithography, and microfluidic devices. The apparatus used to carry out the method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. The apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the coating formation process. The precise addition of each of the reactants in vapor form is metered into a predetermined set volume at a specified temperature to a specified pressure, to provide a highly accurate amount of reactant.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: August 8, 2017
    Assignee: SPTS Technologies Limited
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn
  • Patent number: 8545972
    Abstract: An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and an organic-based layer is directly deposited over the oxide-based layer. Typically, a series of alternating layers of oxide-based layer and organic-based layer are applied.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: October 1, 2013
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Jeffrey D. Chinn, Romuald Nowak, Richard C. Yi
  • Patent number: 8323723
    Abstract: An intraocular lens with a hydrophilic polymer coating composition and method of preparing same are provided. Specifically, a composition suitable for reducing tackiness in intraocular lenses is provided wherein an acrylic intraocular lens is treated by vapor deposition with an alkoxy silyl terminated polyethylene glycol polymer composition.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: December 4, 2012
    Inventors: Michael D Lowery, Laurent Hoffmann, Boris Kobrin, Romuald Nowak, Jeffrey D Chinn, Richard C Yi
  • Patent number: 8298614
    Abstract: An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and a SAM organic-based layer is directly deposited over the oxide-based layer. Typically a series of alternating layers of oxide-based layer and organic-based layer are applied.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: October 30, 2012
    Assignee: Applied MicroStructures, Inc.
    Inventors: Boris Kobrin, Jeffrey D. Chinn, Romuald Nowak, Richard C. Yi
  • Patent number: 8178162
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of films/coatings on substrates. The method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. In addition to the control over the amount of reactants added to the process chamber, the present invention requires precise control over the total pressure (which is less than atmospheric pressure) in the process chamber, the partial vapor pressure of each vaporous component present in the process chamber, the substrate temperature, and typically the temperature of a major processing surface within said process chamber. Control over this combination of variables determines a number of the characteristics of a film/coating or multi-layered film/coating formed using the method. By varying these process parameters, the roughness and the thickness of the films/coatings produced can be controlled.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: May 15, 2012
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn
  • Publication number: 20110052808
    Abstract: An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and a SAM organic-based layer is directly deposited over the oxide-based layer. Typically a series of alternating layers of oxide-based layer and organic-based layer are applied.
    Type: Application
    Filed: November 4, 2010
    Publication date: March 3, 2011
    Inventors: Boris Kobrin, Jeffrey D. Chinn, Romuald Nowak, Richard C. Yi
  • Patent number: 7879396
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of layers and coatings on various substrates. The method and apparatus are useful in the fabrication of biotechnologically functional devices, Bio-MEMS devices, and in the fabrication of microfluidic devices for biological applications. In one important embodiment, oxide coatings providing hydrophilicity or oxide/polyethylene glycol coatings providing hydrophilicity can be deposited by the present method, over the interior surfaces of small wells in a plastic micro-plate in order to increase the hydrophilicity of these wells. Filling these channels with a precise amount of liquid consistently can be very difficult. This prevents a water-based sample from beading up and creating bubbles, so that well can fill accurately and completely, and alleviates spillage into other wells which causes contamination.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: February 1, 2011
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Jeffrey D. Chinn, Romuald Nowak, Richard C. Yi
  • Publication number: 20100304132
    Abstract: An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and an organic-based layer is directly deposited over the oxide-based layer. Typically, a series of alternating layers of oxide-based layer and organic-based layer are applied.
    Type: Application
    Filed: July 29, 2010
    Publication date: December 2, 2010
    Inventors: Boris Kobrin, Jeffrey D. Chinn, Romuald Nowak, Richard C. Yi
  • Patent number: 7776396
    Abstract: An improved vapor-phase deposition method and apparatus for the application of multilayered films/coatings on substrates is described. The method is used to deposit multilayered coatings where the thickness of an oxide-based layer in direct contact with a substrate is controlled as a function of the chemical composition of the substrate, whereby a subsequently deposited layer bonds better to the oxide-based layer. The improved method is used to deposit multilayered coatings where an oxide-based layer is deposited directly over a substrate and an organic-based layer is directly deposited over the oxide-based layer. Typically, a series of alternating layers of oxide-based layer and organic-based layer are applied.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: August 17, 2010
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Jeffrey D. Chinn, Romuald Nowak, Richard C. Yi
  • Patent number: 7687110
    Abstract: We have devised an apparatus useful for and a method of removing impurities from vaporous precursor compositions used to generate reactive precursor vapors from which thin films/layers are formed under sub-atmospheric conditions. The method is particularly useful when the layer deposition apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the layer formation process, where the presence of impurities has a significant affect on both the quantity of reactants being charged and the overall composition of the reactant mixture from which the layer is deposited. The method is particularly useful when the vapor pressure of a liquid reactive precursor is less than about 250 Torr at atmospheric pressure.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: March 30, 2010
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Romuald Nowak, Jeffrey D. Chinn, Richard C. Yi
  • Publication number: 20100075034
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of films/coatings on substrates. The method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. In addition to the control over the amount of reactants added to the process chamber, the present invention requires precise control over the total pressure (which is less than atmospheric pressure) in the process chamber, the partial vapor pressure of each vaporous component present in the process chamber, the substrate temperature, and typically the temperature of a major processing surface within said process chamber. Control over this combination of variables determines a number of the characteristics of a film/coating or multi-layered film/coating formed using the method. By varying these process parameters, the roughness and the thickness of the films/coatings produced can be controlled.
    Type: Application
    Filed: November 19, 2009
    Publication date: March 25, 2010
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn
  • Patent number: 7638167
    Abstract: We have developed an improved vapor-phase deposition method and apparatus for the application of films/coatings on substrates. The method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. In addition to the control over the amount of reactants added to the process chamber, the present invention requires precise control over the total pressure (which is less than atmospheric pressure) in the process chamber, the partial vapor pressure of each vaporous component present in the process chamber, the substrate temperature, and typically the temperature of a major processing surface within said process chamber. Control over this combination of variables determines a number of the characteristics of a film/coating or multi-layered film/coating formed using the method. By varying these process parameters, the roughness and the thickness of the films/coatings produced can be controlled.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: December 29, 2009
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn
  • Patent number: 7413774
    Abstract: A vapor phase deposition method and apparatus for the application of thin layers and coatings on substrates. The method and apparatus are useful in the fabrication of electronic devices, micro-electromechanical systems (MEMS), Bio-MEMS devices, micro and nano imprinting lithography, and microfluidic devices. The apparatus used to carry out the method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. The apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the coating formation process. The precise addition of each of the reactants in vapor form is metered into a predetermined set volume at a specified temperature to a specified pressure, to provide a highly accurate amount of reactant.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: August 19, 2008
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn
  • Publication number: 20040261703
    Abstract: A vapor phase deposition method and apparatus for the application of thin layers and coatings on substrates. The method and apparatus are useful in the fabrication of electronic devices, micro-electromechanical systems (MEMS), Bio-MEMS devices, micro and nano imprinting lithography, and microfluidic devices. The apparatus used to carry out the method provides for the addition of a precise amount of each of the reactants to be consumed in a single reaction step of the coating formation process. The apparatus provides for precise addition of quantities of different combinations of reactants during a single step or when there are a number of different individual steps in the coating formation process. The precise addition of each of the reactants in vapor form is metered into a predetermined set volume at a specified temperature to a specified pressure, to provide a highly accurate amount of reactant.
    Type: Application
    Filed: January 17, 2004
    Publication date: December 30, 2004
    Applicants: Jeffrey D. Chinn, Romuald Nowak
    Inventors: Boris Kobrin, Romuald Nowak, Richard C. Yi, Jeffrey D. Chinn