Patents by Inventor Richard Cheng-Ming Yeh

Richard Cheng-Ming Yeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10717063
    Abstract: A polymer synthesis system has a polymerization reactor and a deliquifying-quench extruder downstream of and in fluid communication with the polymerization reactor. The polymerization reactor has an inlet and an outlet with a rotatable shaft positioned axially within the reactor. The deliquifying-quench extruder has an inlet and an outlet, with a shaft assembly positioned axially within the extruder. The shaft assembly includes multiple helical flight configurations and multiple processing zones defined by the multiple flight configurations. The processing zones include an extraction-compaction zone, a sealing zone downstream of the extraction-compaction zone, a vent-cooling zone downstream of the sealing zone, a quenching zone downstream of the vent-cooling zone, and a conveying zone downstream of the quenching zone.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: July 21, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard Cheng-Ming Yeh, Richard D. Hembree, Michael F. McDonald, Jr., Joseph A. Maier
  • Publication number: 20180207608
    Abstract: A polymer synthesis system has a polymerization reactor and a deliquifying-quench extruder downstream of and in fluid communication with the polymerization reactor. The polymerization reactor has an inlet and an outlet with a rotatable shaft positioned axially within the reactor. The deliquifying-quench extruder has an inlet and an outlet, with a shaft assembly positioned axially within the extruder. The shaft assembly includes multiple helical flight configurations and multiple processing zones defined by the multiple flight configurations. The processing zones include an extraction-compaction zone, a sealing zone downstream of the extraction-compaction zone, a vent-cooling zone downstream of the sealing zone, a quenching zone downstream of the vent-cooling zone, and a conveying zone downstream of the quenching zone.
    Type: Application
    Filed: July 8, 2016
    Publication date: July 26, 2018
    Inventors: Richard Cheng-Ming Yeh, Richard D. Hembree, Joseph A. Maier, Michael F. McDonald
  • Publication number: 20170144084
    Abstract: Provided is a vacuum devolatilizer for use in a polymer manufacturing or processing plant. The devolatilizer comprises a vacuum chamber having an inlet for a polymer melt, an outlet for a polymer melt, a vacuum port through which volatiles may be removed and a stirrer shaft port for the entry of a stirrer shaft. The stirrer shaft passes through the at least one stirrer shaft port and extends into the vacuum chamber and carries an agitation means. The stirrer shaft seal is associated with each stirrer shaft port for sealing against the stirrer shaft and each stirrer shaft seal has an external portion outside the vacuum chamber. The devolatilizer is provided with a motor located outside of the vacuum chamber for rotating shaft and comprises means for blanketing the external portion of the stirrer shaft seal with a low oxygen content gas or vapor, e.g., nitrogen, helium, steam, or carbon dioxide.
    Type: Application
    Filed: December 17, 2010
    Publication date: May 25, 2017
    Inventors: Richard Cheng-Ming Yeh, Vetkav R. Eswaran
  • Patent number: 8562915
    Abstract: Provided are apparatus and methods relating to the finishing line of a continuous solution polymerization plant. In one aspect, an apparatus includes a pelletizer having cooling liquid, e.g., water or aqueous solution, into which is added a pelletization aid. In another aspect, the apparatus comprises means to remove residual polymer particles from the pelletizer cooling liquid. In a further aspect, the apparatus comprises conduits of at least 50 m in length for carrying propellant cooling liquid from the pelletizer to a drying apparatus. The residence time of the pellets in the cooling liquid may be 10 seconds or more. In a further aspect, a drying apparatus is provided for the pellets which comprises first and second drying zones. In a further aspect, a pneumatic conveyor is provided for carrying pellets to a packaging apparatus. In a further aspect, a packaging apparatus is provided comprising a blender silo.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: October 22, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard Cheng-Ming Yeh, Vetkav Rajagopalan Eswaran, Edgar Peter Hentsch, Oscar Kearney Broussard, III
  • Patent number: 8378042
    Abstract: Extruded, copolymer pellet compositions and methods for making the same. A copolymer pellet composition can have an ethylene content of about 40 wt % to about 50 wt % and a propylene content of about 50 wt % to about 60 wt %, based on total weight of the copolymer, wherein the copolymer has a MFR (230° C./2.16 kg) of from about 3.0 g/10 min and about 25 g/10 min; a MWD (Mw/Mn) of about 2.3 or less; and no measurable melting peak, as measured by DSC.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: February 19, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard Cheng-Ming Yeh, Rainer Kolb
  • Patent number: 8372924
    Abstract: Described herein in one embodiment is a plant for the continuous solution polymerization of one or more monomers in a solvent, e.g., a hydrocarbon solvent. In one aspect, the plant comprises a high pressure pump and at least one heat exchanger downstream of the pump. In another aspect a feed is cooled by three heat exchangers which are refrigerated by means of a common three stage compressor. In another aspect, the plant comprises a primary reactor and a secondary reactor arranged to operate in parallel, in which the ratio of volume of the primary reactor to the secondary reactor is in the range of 60:40 to 95:5. In another aspect, a method of defouling a heat exchanger is provided in which the level of liquid refrigerant in the heat exchanger is temporarily lowered.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: February 12, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard Cheng-Ming Yeh, Bruce C. Devoy, Vetkav R. Eswaran, Rui Zhao
  • Publication number: 20110172375
    Abstract: Described herein in one embodiment is a plant for the continuous solution polymerization of one or more monomers in a solvent, e.g., a hydrocarbon solvent. In one aspect, the plant comprises a high pressure pump and at least one heat exchanger downstream of the pump. In another aspect a feed is cooled by three heat exchangers which are refrigerated by means of a common three stage compressor. In another aspect, the plant comprises a primary reactor and a secondary reactor arranged to operate in parallel, in which the ratio of volume of the primary reactor to the secondary reactor is in the range of 60:40 to 95:5. In another aspect, a method of defouling a heat exchanger is provided in which the level of liquid refrigerant in the heat exchanger is temporarily lowered.
    Type: Application
    Filed: December 17, 2010
    Publication date: July 14, 2011
    Inventors: Richard Cheng-Ming Yeh, Bruce C. Devoy, Vetkav R. Eswaran, Rui Zhao
  • Publication number: 20110172383
    Abstract: Provided is a vacuum devolatilizer for use in a polymer manufacturing or processing plant. The devolatilizer comprises a vacuum chamber having an inlet for a polymer melt, an outlet for a polymer melt, a vacuum port through which volatiles may be removed and a stirrer shaft port for the entry of a stirrer shaft. The stirrer shaft passes through the at least one stirrer shaft port and extends into the vacuum chamber and carries an agitation means. The stirrer shaft seal is associated with each stirrer shaft port for sealing against the stirrer shaft and each stirrer shaft seal has an external portion outside the vacuum chamber. The devolatilizer is provided with a motor located outside of the vacuum chamber for rotating shaft and comprises means for blanketing the external portion of the stirrer shaft seal with a low oxygen content gas or vapor, e.g., nitrogen, helium, steam, or carbon dioxide.
    Type: Application
    Filed: December 17, 2010
    Publication date: July 14, 2011
    Inventors: Richard Cheng-Ming Yeh, Vetkav R. Eswaran
  • Publication number: 20110172382
    Abstract: Provided are apparatus and methods relating to the finishing line of a continuous solution polymerization plant. In one aspect, an apparatus includes a pelletizer having cooling liquid, e.g., water or aqueous solution, into which is added a pelletization aid. In another aspect, the apparatus comprises means to remove residual polymer particles from the pelletizer cooling liquid. In a further aspect, the apparatus comprises conduits of at least 50 m in length for carrying propellant cooling liquid from the pelletizer to a drying apparatus. The residence time of the pellets in the cooling liquid may be 10 seconds or more. In a further aspect, a drying apparatus is provided for the pellets which comprises first and second drying zones. In a further aspect, a pneumatic conveyor is provided for carrying pellets to a packaging apparatus. In a further aspect, a packaging apparatus is provided comprising a blender silo.
    Type: Application
    Filed: December 17, 2010
    Publication date: July 14, 2011
    Inventors: Richard Cheng-Ming Yeh, Vetkav Rajagopalan Eswaran, Edgar Peter Hentsch, Oscar Kearney Broussard, III
  • Publication number: 20100273936
    Abstract: Extruded, copolymer pellet compositions and methods for making the same. A copolymer pellet composition can have an ethylene content of about 40 wt % to about 50 wt % and a propylene content of about 50 wt % to about 60 wt %, based on total weight of the copolymer, wherein the copolymer has a MFR (230° C./2.16 kg) of from about 3.0 g/10 min and about 25 g/10 min; a MWD (Mw/Mn) of about 2.3 or less; and no measurable melting peak, as measured by DSC.
    Type: Application
    Filed: September 29, 2009
    Publication date: October 28, 2010
    Inventors: Richard Cheng-Ming Yeh, Rainer Kolb
  • Patent number: 7803876
    Abstract: Processes for producing blends of a first polymer component and a second polymer component are provided. The first polymer component and the second polymer component are blended in an internally agitated mixer such as a devolatizer in the presence of at least one solvent. Blending the polymers in this manner results in an intimate mixing of the first and second polymers, providing beneficial performance characteristics. In one embodiment, the first polymer incorporates at least 75 wt. % of propylene-derived units wherein the propylene-derived units have an isotactic triad fraction of about 65% to about 99% and wherein the first polymer has a heat of fusion of less than 75 J/g. In this embodiment, the second polymer is selected from polypropylenes, low density polyethylenes, high density polyethylenes, polystyrenes, polyamides, polycarbonates, and polyesters.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: September 28, 2010
    Assignee: ExxonMobil Chemical Patent Inc.
    Inventors: Richard Cheng-Ming Yeh, Sudhin Datta
  • Patent number: 6008282
    Abstract: Styrene/acrylonitrile (SAN) resin compositions are provided having both improved room temperature impact properties as well as good weatherability. The compositions comprise a mixture of SAN resin, an elastomeric halogenated copolymer comprising a C.sub.2 to C.sub.12 monoolefin, e.g. isobutylene, and a ring-substituted alklstyrene, e.g., para-methylstyrene, and a compatibilizing agent such as zinc stearate.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: December 28, 1999
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: Hsien-Chang Wang, Richard Cheng-Ming Yeh